<em>AC bisects ∠BAD, => ∠BAC=∠CAD ..... (1)</em>
<em>thus in ΔABC and ΔADC, ∠ABC=∠ADC (given), </em>
<em> ∠BAC=∠CAD [from (1)],</em>
<em>AC (opposite side side of ∠ABC) = AC (opposite side side of ∠ADC), the common side between ΔABC and ΔADC</em>
<em>Hence, by AAS axiom, ΔABC ≅ ΔADC,</em>
<em>Therefore, BC (opposite side side of ∠BAC) = DC (opposite side side of ∠CAD), since (1)</em>
<em />
Hence, BC=DC proved.
Answer:
<em>Volume</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>sphere</em><em> </em><em>is</em><em> </em><em>36</em><em>π</em><em> </em><em>(</em><em>or</em><em>)</em><em> </em><em>113</em><em>.</em><em>097</em><em> </em><em>cubic</em><em> </em><em>centimetre</em><em>. </em>
Step-by-step explanation:
<em>HAVE A NICE DAY</em><em>!</em>
<em>THANKS FOR GIVING ME THE OPPORTUNITY</em><em> </em><em>TO ANSWER YOUR QUESTION</em><em>. </em>
Answer:
56
Step-by-step explanation:
if it is lenght by width then you would multiply the two numbers