1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
11

In exercises 27-30, three vertices of DEFG are given. Find the coordinates of the remaining vertices: D(-2,-4), F(0,7), G(1,0)

Mathematics
1 answer:
finlep [7]3 years ago
3 0

Answer:

E = (-3,3)

Step-by-step explanation:

Given

Parallelogram: DEFG

D(x_1,y_1) = (-2,-4)

F(x_3,y_3) = (0,7)

G(x_3,y_4) = (1,0)

Required

Find the coordinates of E(x_2,y_2)

To do this, we make use of mid-point formula which is:

M = (\frac{x_1+x_3}{2},\frac{y_1+y_3}{2})= (\frac{x_2+x_4}{2},\frac{y_2+y_4}{2})

This gives:

(\frac{-2+0}{2},\frac{-4+7}{2})= (\frac{x_2+1}{2},\frac{y_2+0}{2})

(\frac{-2}{2},\frac{3}{2})= (\frac{x_2+1}{2},\frac{y_2+0}{2})

Multiply through by 2

2 * (\frac{-2}{2},\frac{3}{2})= (\frac{x_2+1}{2},\frac{y_2+0}{2})*2

(-2,3) = (x_2+1,y_2+0)

(-2,3) = (x_2+1,y_2)

By comparison:

-2 = x_2 + 1 and 3= y_2

So, we have:

-2-1=x_2 and 3= y_2

-3 = x_2 and 3 = y_2

This gives:

x_2 = -3 and y_2 =3

Hence, the 4th coordinate is: (-3,3)

You might be interested in
Given the parent function f(x)=x^2 give the best description of the graph of y=x^3+3. a. expanded vertically by a factor of 5 c.
4vir4ik [10]

Answer:

Step-by-step explanation:nsnsnmalqlq

8 0
3 years ago
Read 2 more answers
What is a possible value for the missing term of the geometric sequence? 1250 , _ , 50 , ...
statuscvo [17]
The number could be 250. The reason why is because 1250 divided by 5 = 250, and 250 divided by 5 = 5. Hope this helps you, and good luck!!
8 0
4 years ago
Read 2 more answers
Using f(x)=7x+35 what is the x-intercept
Gelneren [198K]

Answer:

(-5,0)

Step-by-step explanation:

8 0
4 years ago
I need the answer quick pls!!!
Kamila [148]
Do you still need the answer
3 0
3 years ago
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
Marrrta [24]

Answer:

a) Bi [P ( X >=15 ) ] ≈ 0.9944

b) Bi [P ( X >=30 ) ] ≈ 0.3182

c)  Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) Bi [P ( X >40 ) ] ≈ 0.0046  

Step-by-step explanation:

Given:

- Total sample size n = 745

- The probability of success p = 0.037

- The probability of failure q = 0.963

Find:

a. 15 or more will live beyond their 90th birthday

b. 30 or more will live beyond their 90th birthday

c. between 25 and 35 will live beyond their 90th birthday

d. more than 40 will live beyond their 90th birthday

Solution:

- The condition for normal approximation to binomial distribution:                                                

                    n*p = 745*0.037 = 27.565 > 5

                    n*q = 745*0.963 = 717.435 > 5

                    Normal Approximation is valid.

a) P ( X >= 15 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=15 ) ] = N [ P ( X >= 14.5 ) ]

 - Then the parameters u mean and σ standard deviation for normal distribution are:

                u = n*p = 27.565

                σ = sqrt ( n*p*q ) = sqrt ( 745*0.037*0.963 ) = 5.1522

- The random variable has approximated normal distribution as follows:

                X~N ( 27.565 , 5.1522^2 )

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 14.5 ) ] = P ( Z >= (14.5 - 27.565) / 5.1522 )

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= -2.5358 ) = 0.9944

                N [ P ( X >= 14.5 ) ] = P ( Z >= -2.5358 ) = 0.9944

Hence,

                Bi [P ( X >=15 ) ] ≈ 0.9944

b) P ( X >= 30 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >=30 ) ] = N [ P ( X >= 29.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X >= 29.5 ) ] = P ( Z >= (29.5 - 27.565) / 5.1522 )

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 )

- Now use the Z-score table to evaluate the probability:

                P ( Z >= 0.37556 ) = 0.3182

                N [ P ( X >= 29.5 ) ] = P ( Z >= 0.37556 ) = 0.3182

Hence,

                Bi [P ( X >=30 ) ] ≈ 0.3182  

c) P ( 25=< X =< 35 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( 25=< X =< 35 ) ] = N [ P ( 24.5=< X =< 35.5 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( 24.5=< X =< 35.5 ) ]= P ( (24.5 - 27.565) / 5.1522 =<Z =< (35.5 - 27.565) / 5.1522 )

                N [ P ( 24.5=< X =< 25.5 ) ] = P ( -0.59489 =<Z =< 1.54011 )

- Now use the Z-score table to evaluate the probability:

                P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

               N [ P ( 24.5=< X =< 35.5 ) ]= P ( -0.59489 =<Z =< 1.54011 ) = 0.6623

Hence,

                Bi [P ( 25=< X =< 35 ) ] ≈ 0.6623

d) P ( X > 40 ) ?

 - Apply continuity correction for normal approximation:

                Bi [P ( X >40 ) ] = N [ P ( X > 41 ) ]

- Now compute the Z - value for the corrected limit:

                N [ P ( X > 41 ) ] = P ( Z > (41 - 27.565) / 5.1522 )

                N [ P ( X > 41 ) ] = P ( Z > 2.60762 )

- Now use the Z-score table to evaluate the probability:

               P ( Z > 2.60762 ) = 0.0046

               N [ P ( X > 41 ) ] =  P ( Z > 2.60762 ) = 0.0046

Hence,

                Bi [P ( X >40 ) ] ≈ 0.0046  

4 0
4 years ago
Other questions:
  • What is -7/2(-7/2+1)=413/8
    9·2 answers
  • Add.3/2a+5/2a PLease help!
    15·2 answers
  • Fill in the blank to make the fractions equivalent. <br><br> 3/4 = []/12
    6·1 answer
  • Luke has a calculator that will only display number less than or equal to 999,999,999. Which of the following products will his
    10·1 answer
  • List the next four multiples of the fraction 3/4
    10·1 answer
  • Three out of five students wore green on st Patrick's day what percent of the stundents wore green
    15·2 answers
  • Find the area of a triangle with vertices (-2,2), (1,5) and (6,-1).
    11·1 answer
  • The difference between two numbers is 13. twice the smaller plus three times the larger is 129
    5·1 answer
  • Please help lol!!!!!
    11·2 answers
  • HELPPP PLS THIS IS DUE TOMARRROW
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!