Answer:
Step-by-step explanation:
10
Answer: 15
Step-by-step explanation:
(r+1)th term of
is given by:-

For
, n= 6

![=\ \dfrac{6!}{4!2!}a^4b^2\ \ \ [^nC_r=\dfrac{n!}{r!(n-r)!}]\\\\=\dfrac{6\times5\times4!}{4!\times2}a^4b^2\\\\=3\times5a^4b^2\\\\ =15a^4b^2](https://tex.z-dn.net/?f=%3D%5C%20%5Cdfrac%7B6%21%7D%7B4%212%21%7Da%5E4b%5E2%5C%20%5C%20%5C%20%5B%5EnC_r%3D%5Cdfrac%7Bn%21%7D%7Br%21%28n-r%29%21%7D%5D%5C%5C%5C%5C%3D%5Cdfrac%7B6%5Ctimes5%5Ctimes4%21%7D%7B4%21%5Ctimes2%7Da%5E4b%5E2%5C%5C%5C%5C%3D3%5Ctimes5a%5E4b%5E2%5C%5C%5C%5C%20%3D15a%5E4b%5E2)
Hence, the coefficient of the third term in the binomial expansion of
is 15.
Answer:
I cant answer it because you cant copy it it doesnt allow me
Answer:
x=-1
Step-by-step explanation:
1. Remove the parenthesis
-x + 1 = -4x - 2
2. Get x alone
-x + 1 = -4x - 2
+1x +1x
1=-3x - 2
+2 +2
3=-3x -3x/-3= x 3/-3 = -1
x=-1
I think the answer is D, None of the above