1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
2 years ago
7

Help ................

Mathematics
1 answer:
Natasha2012 [34]2 years ago
4 0
Hmmm it's linear since it's multipling by 3 each time
You might be interested in
oceanside bike rental shop charges a $17 fixed fee plus six dollars an hour for renting a bike. Tim paid $47 to rent a bike. How
gavmur [86]
Approximately 8 hours
8 0
2 years ago
Use the Trapezoidal Rule, the Midpoint Rule, and Simpson's Rule to approximate the given integral with the specified value of n.
Otrada [13]

I guess the "5" is supposed to represent the integral sign?

I=\displaystyle\int_1^4\ln t\,\mathrm dt

With n=10 subintervals, we split up the domain of integration as

[1, 13/10], [13/10, 8/5], [8/5, 19/10], ... , [37/10, 4]

For each rule, it will help to have a sequence that determines the end points of each subinterval. This is easily, since they form arithmetic sequences. Left endpoints are generated according to

\ell_i=1+\dfrac{3(i-1)}{10}

and right endpoints are given by

r_i=1+\dfrac{3i}{10}

where 1\le i\le10.

a. For the trapezoidal rule, we approximate the area under the curve over each subinterval with the area of a trapezoid with "height" equal to the length of each subinterval, \dfrac{4-1}{10}=\dfrac3{10}, and "bases" equal to the values of \ln t at both endpoints of each subinterval. The area of the trapezoid over the i-th subinterval is

\dfrac{\ln\ell_i+\ln r_i}2\dfrac3{10}=\dfrac3{20}\ln(ell_ir_i)

Then the integral is approximately

I\approx\displaystyle\sum_{i=1}^{10}\frac3{20}\ln(\ell_ir_i)\approx\boxed{2.540}

b. For the midpoint rule, we take the rectangle over each subinterval with base length equal to the length of each subinterval and height equal to the value of \ln t at the average of the subinterval's endpoints, \dfrac{\ell_i+r_i}2. The area of the rectangle over the i-th subinterval is then

\ln\left(\dfrac{\ell_i+r_i}2\right)\dfrac3{10}

so the integral is approximately

I\approx\displaystyle\sum_{i=1}^{10}\frac3{10}\ln\left(\dfrac{\ell_i+r_i}2\right)\approx\boxed{2.548}

c. For Simpson's rule, we find a quadratic interpolation of \ln t over each subinterval given by

P(t_i)=\ln\ell_i\dfrac{(t-m_i)(t-r_i)}{(\ell_i-m_i)(\ell_i-r_i)}+\ln m_i\dfrac{(t-\ell_i)(t-r_i)}{(m_i-\ell_i)(m_i-r_i)}+\ln r_i\dfrac{(t-\ell_i)(t-m_i)}{(r_i-\ell_i)(r_i-m_i)}

where m_i is the midpoint of the i-th subinterval,

m_i=\dfrac{\ell_i+r_i}2

Then the integral I is equal to the sum of the integrals of each interpolation over the corresponding i-th subinterval.

I\approx\displaystyle\sum_{i=1}^{10}\int_{\ell_i}^{r_i}P(t_i)\,\mathrm dt

It's easy to show that

\displaystyle\int_{\ell_i}^{r_i}P(t_i)\,\mathrm dt=\frac{r_i-\ell_i}6(\ln\ell_i+4\ln m_i+\ln r_i)

so that the value of the overall integral is approximately

I\approx\displaystyle\sum_{i=1}^{10}\frac{r_i-\ell_i}6(\ln\ell_i+4\ln m_i+\ln r_i)\approx\boxed{2.545}

4 0
3 years ago
Four subtracted from eight is equal to two squared
Scilla [17]
Yes. This is true because 4 subtracted from 8 is 8-4=4. The value you get from subtracting 4 from 8 equals the same value you would get if you were to take the value of 2 and square it. Both equal 4.
4 0
3 years ago
PLEASE HELP ME/ The quadrilateral shown is a rhombus. What is m∠2?
solong [7]
A: 28 is your answer
6 0
3 years ago
Read 2 more answers
The guidance department has reported that of the senior class, 2.3% are members of key club, K, 8.6% are enrolled in AP physics,
Levart [38]
P(P|K) = 82.6%.

P(P|K) = P(K and P)/P(K) = 1.9%/2.3% = 0.019/0.023 = 0.8261 = 82.6%
4 0
3 years ago
Read 2 more answers
Other questions:
  • Let x be the seats in the small van and y the seats in the large van. how many seats does the large van have?
    11·1 answer
  • Find the mean and median of the data.<br><br> 12, 15, 16, 18, 20, 90<br><br> please help!!!
    12·1 answer
  • Ivan drove 737 miles in 11 hours. At the same rate, how long would it take him to drive 603 miles?
    6·2 answers
  • A business report and that income of -$2730 over a three-month period what is the average income per month for that pery
    15·1 answer
  • Nevermind I don't need help
    5·2 answers
  • Suppose you had x dollars in your bank account. You spent $22 but have at least $28 left. How much money did you have initially?
    8·2 answers
  • 5 ( x- 3 ) ^ 2 - 10 = 60
    9·2 answers
  • I need helpppppppp pleaseeeeee
    13·1 answer
  • Point b lies on ac between a and c. If Ab =8 and ac=10 find Bc
    12·1 answer
  • Brainliest
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!