1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arlik [135]
3 years ago
9

Estimate the answer by rounding the divisor to the nearest whole number. 196,900÷4.084

Mathematics
2 answers:
Daniel [21]3 years ago
6 0

9514 1404 393

Answer:

  49,000

Step-by-step explanation:

The divisor is 4.084. When it is rounded to the nearest whole number, it is 4.

Then the division problem becomes ...

  196,900/4 ≈ 49,000 . . . . . . showing just 2 significant digits for the estimate

__

The point of an estimate is to obtain an approximate answer that is within a few percent of the actual answer. Here, rounding 4.084 to 4.000 gives an error on the order of .084/4 ≈ 2.1%. Because we're using a smaller divisor, the value we obtain for our estimate will be too large by about that amount.

Often, an estimate that has 1 or 2 significant digits is "close enough" for the purpose. Because a change in our estimated value of 1 in the least significant digit is a change of about 2%, we judge this estimate to be "close enough", given the rounding we did to start. Keeping 3 significant digits in our estimate would claim an accuracy that it does not have.

Ket [755]3 years ago
3 0

Answer:

48,213

Step-by-step explanation:

The full answer is 48,212.5367, but because there is a 5 in the tenths place you round the whole number up

You might be interested in
Which of the following do you need to make a box & whisker plot?
nikitadnepr [17]

Answer:

Median, box and whisker plots are all about the median

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What is the quotation -3/8 divided by -1/4
Bumek [7]

Answer:

3/2

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
If you were to solve the following system by substitution, what would be the best variable to solve for and from what equation?
fgiga [73]
X in the first equation

because 3x + 6y = 9 can be reduced by dividing by 3, thus, giving u 
x + 2y = 3.....x = -2y + 3...which u would sub in for x in the other equation
7 0
3 years ago
Complete this statement using &gt;, &lt;, or =<br><br> 0.248_____0.259
andreyandreev [35.5K]

Answer:

Here the most appropriate answer is '>'

Thus it will be 0.248<u> > </u>0.259

8 0
3 years ago
Find an equation of the tangent plane to the given parametric surface at the specified point.
Neko [114]

Answer:

Equation of tangent plane to given parametric equation is:

\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}

Step-by-step explanation:

Given equation

      r(u, v)=u cos (v)\hat{i}+u sin (v)\hat{j}+v\hat{k}---(1)

Normal vector  tangent to plane is:

\hat{n} = \hat{r_{u}} \times \hat{r_{v}}\\r_{u}=\frac{\partial r}{\partial u}\\r_{v}=\frac{\partial r}{\partial v}

\frac{\partial r}{\partial u} =cos(v)\hat{i}+sin(v)\hat{j}\\\frac{\partial r}{\partial v}=-usin(v)\hat{i}+u cos(v)\hat{j}+\hat{k}

Normal vector  tangent to plane is given by:

r_{u} \times r_{v} =det\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\cos(v)&sin(v)&0\\-usin(v)&ucos(v)&1\end{array}\right]

Expanding with first row

\hat{n} = \hat{i} \begin{vmatrix} sin(v)&0\\ucos(v) &1\end{vmatrix}- \hat{j} \begin{vmatrix} cos(v)&0\\-usin(v) &1\end{vmatrix}+\hat{k} \begin{vmatrix} cos(v)&sin(v)\\-usin(v) &ucos(v)\end{vmatrix}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u(cos^{2}v+sin^{2}v)\hat{k}\\\hat{n}=sin(v)\hat{i}-cos(v)\hat{j}+u\hat{k}\\

at u=5, v =π/3

                  =\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k} ---(2)

at u=5, v =π/3 (1) becomes,

                 r(5, \frac{\pi}{3})=5 cos (\frac{\pi}{3})\hat{i}+5sin (\frac{\pi}{3})\hat{j}+\frac{\pi}{3}\hat{k}

                r(5, \frac{\pi}{3})=5(\frac{1}{2})\hat{i}+5 (\frac{\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}

                r(5, \frac{\pi}{3})=\frac{5}{2}\hat{i}+(\frac{5\sqrt{3}}{2})\hat{j}+\frac{\pi}{3}\hat{k}

From above eq coordinates of r₀ can be found as:

            r_{o}=(\frac{5}{2},\frac{5\sqrt{3}}{2},\frac{\pi}{3})

From (2) coordinates of normal vector can be found as

            n=(\frac{\sqrt{3} }{2},-\frac{1}{2},1)  

Equation of tangent line can be found as:

  (\hat{r}-\hat{r_{o}}).\hat{n}=0\\((x-\frac{5}{2})\hat{i}+(y-\frac{5\sqrt{3}}{2})\hat{j}+(z-\frac{\pi}{3})\hat{k})(\frac{\sqrt{3} }{2}\hat{i}-\frac{1}{2}\hat{j}+\hat{k})=0\\\frac{\sqrt{3}}{2}x-\frac{5\sqrt{3}}{4}-\frac{1}{2}y+\frac{5\sqrt{3}}{4}+z-\frac{\pi}{3}=0\\\frac{\sqrt{3}}{2}x-\frac{1}{2}y+z=\frac{\pi}{3}

5 0
3 years ago
Other questions:
  • 3 inches to the nearest 1/2 inch
    10·1 answer
  • How do you find the maximum of a graph
    15·1 answer
  • How do you use an exponent to represent a number?
    15·1 answer
  • Consists of arranging for a market offering to occupy a clear, distinctive, and desirable place relative to competing products i
    9·1 answer
  • Mrs. Porcelli's classroom bulletin board is 2 % feet long. Ms. Smith's bulletin board is 3
    8·1 answer
  • The table gives a set of outcomes and their probabilities. Let A be the event "the outcome is
    5·1 answer
  • 4^2 x 2<br> Please will give brainliests
    12·2 answers
  • A window in Michael's room is the shape of a trapezoid. The bases are 30 inches and 40 inches. The height of the window is 24 in
    12·1 answer
  • In a quiz , team A scored 2 ,4 , -2 , 0 , -2 team B scored -4 ,2 , 2 ,-2 ,4 in successive5 rounds
    14·1 answer
  • It’s late! Help asap!
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!