1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
2 years ago
8

Which statement is always true?

Mathematics
1 answer:
Ugo [173]2 years ago
8 0
The product of two rational numbers is rational is the correct answer
You might be interested in
compute the projection of → a onto → b and the vector component of → a orthogonal to → b . give exact answers.
Nina [5.8K]

\text { Saclar projection } \frac{1}{\sqrt{3}} \text { and Vector projection } \frac{1}{3}(\hat{i}+\hat{j}+\hat{k})

We have been given two vectors $\vec{a}$ and $\vec{b}$, we are to find out the scalar and vector projection of $\vec{b}$ onto $\vec{a}$

we have $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$

The scalar projection of$\vec{b}$onto $\vec{a}$means the magnitude of the resolved component of $\vec{b}$ the direction of $\vec{a}$ and is given by

The scalar projection of $\vec{b}$onto

$\vec{a}=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|}$

$$\begin{aligned}&=\frac{(\hat{i}+\hat{j}+\hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})}{\sqrt{1^2+1^1+1^2}} \\&=\frac{1^2-1^2+1^2}{\sqrt{3}}=\frac{1}{\sqrt{3}}\end{aligned}$$

The Vector projection of $\vec{b}$ onto $\vec{a}$ means the resolved component of $\vec{b}$ in the direction of $\vec{a}$ and is given by

The vector projection of $\vec{b}$ onto

$\vec{a}=\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \cdot(\hat{i}+\hat{j}+\hat{k})$

$$\begin{aligned}&=\frac{(\hat{i}+\hat{j}+\hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})}{\left(\sqrt{1^2+1^1+1^2}\right)^2} \cdot(\hat{i}+\hat{j}+\hat{k}) \\&=\frac{1^2-1^2+1^2}{3} \cdot(\hat{i}+\hat{j}+\hat{k})=\frac{1}{3}(\hat{i}+\hat{j}+\hat{k})\end{aligned}$$

To learn more about scalar and vector projection visit:brainly.com/question/21925479

#SPJ4

3 0
1 year ago
PLEASE HELP QUICKLY I WILL MARK BRAINLIEST AND IF YOU ARE TRYING TO GET FREE POINT I WILL REPORT YOU
Juliette [100K]
<B+<D = 180
x+148 = 180
x = 32

<A = 2(32) + 1
<A = 64+1
<A = 65
5 0
3 years ago
Read 2 more answers
Insert parentheses in the expression 6 + 10 x 2 so that the expression equals (12+1)*2
Lesechka [4]
6 + (10 x 2) = 26 = (12+1)*2
5 0
3 years ago
7. It is impossible for the Census Bureau to obtain all the census data about the
quester [9]

correct, as there are illegal immigrants.

7 0
3 years ago
1.
Eddi Din [679]

Answer:

a) y=\dfrac{5}{2}x

b) yes the two lines are perpendicular

c) y=\dfrac{5}{4}x+6

Step-by-step explanation:

a) All this is asking if to find a line that is perpendicular to 2x + 5y = 7 AND passes through the origin.

so first we'll find the gradient(or slope) of 2x + 5y = 7, this can be done by simply rearranging this equation to the form y = mx + c

5y = 7 - 2x

y = \dfrac{7 - 2x}{5}

y = \dfrac{7}{5} - \dfrac{2}{5}x

y = -\dfrac{2}{5}x+\dfrac{7}{5}

this is changed into the y = mx + c, and we easily see that -2/5 is in the place of m, hence m = \frac{-2}{5} is the slope of the line 2x + 5y = 7.

Now, we need to find the slope of its perpendicular. We'll use:

m_1m_2=-1.

here both slopesm_1 and m_2 are slopes that are perpendicular to each other, so by plugging the value -2/5 we'll find its perpendicular!

\dfrac{-2}{5}m_2=-1.

m_2=\dfrac{5}{2}.

Finally, we can find the equation of the line of the perpendicular using:

(y-y_1)=m(x-x_1)

we know that the line passes through origin(0,0) and its slope is 5/2

(y-0)=\dfrac{5}{2}(x-0)

y=\dfrac{5}{2}x is the equation of the the line!

b) For this we need to find the slopes of both lines and see whether their product equals -1?

mathematically, we need to see whether m_1m_2=-1 ?

the slopes can be easily found through rearranging both equations to y=mx+c

Line:1

2x + 3y =6

y =\dfrac{-2x+6}{3}

y =\dfrac{-2}{3}x+2

Line:2

y = \dfrac{3}{2}x + 4

this equation is already in the form we need.

the slopes of both equations are

m_1 = \dfrac{-2}{3} and m_2 = \dfrac{3}{2}

using

m_1m_2=-1

\dfrac{-2}{3} \times \dfrac{3}{2}=-1

-1=-1

since the product does equal -1, the two lines are indeed perpendicular!

c)if two perpendicular lines have the same intercept, that also means that the two lines meet at that intercept.

we can easily find the slope of the given line, y = − 4 / 5 x + 6 to be m=\dfrac{-4}{5} and the y-intercept is c=6 the coordinate at the y-intercept will be (0,6) since this point only lies in the y-axis.

we'll first find the slope of the perpendicular using:

m_1m_2=-1

\dfrac{-4}{5}m_2=-1

m_2=\dfrac{5}{4}

we have all the ingredients to find the equation of the line now. i.e (0,6) and m

(y-y_1)=m(x-x_1)

(y-6)=\dfrac{5}{4}(x-0)

y=\dfrac{5}{4}x+6

this is the equation of the second line.

side note:

this could also have been done by simply replacing the slope(m1) of the y = − 4 / 5 x + 6 by the slope of the perpendicular(m2): y = 5 / 4 x + 6

8 0
3 years ago
Other questions:
  • Based on the function F(x) = x^4 - 3x^3+ x^2 +2 and the graph of G(X) below,
    13·1 answer
  • On an architects plan for a house, the scale reads 1/2 in. = 5 ft. How long is the actual length of a room that's 2 in. Long on
    8·1 answer
  • What are the zeros of 2x^2+17x=-21
    8·1 answer
  • Round 5.823 to the nearest whole
    11·2 answers
  • Ans this question......​
    9·1 answer
  • Drag and drop numbers into the boxes so that the paired values are in a proportional relationship.
    10·1 answer
  • Which number is equal to 15 a)0.015 b)1.5 c)150/100 d)3/20
    11·2 answers
  • Please help me!!! Help meeee
    15·1 answer
  • (2a-4a2+8)+(5a2 -5a+6)
    9·2 answers
  • Please help me with this.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!