Answer: 
Explanation:
A double displacement reaction is one in which exchange of ions take place. The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid form are represented by (s) after their chemical formulas.

The equation can be written in terms of ions as:

Spectator ions are defined as the ions which does not get involved in a chemical equation or they are ions which are found on both the sides of the chemical reaction present in ionic form.
The ions which are present on both the sides of the equation are potassium and nitrate ions and hence are not involved in net ionic equation.
Hence, the net ionic equation is :

Answer:
use the rule of speed
Explanation:
speed =distance over time
Amount of a substance (called the solute) that dissolves in a unit volume of a liquid substance (called the solvent) to form a saturated solution under specified conditions of temperature and pressure.Solubility is expressed usually as moles of solute per 100 grams of solvent.
We need an equation that would relate the concentration of the original solution to that of the desired solution. To solve this we use the equation expressed as follows,
M1V1 = M2V2
where M1 is the concentration
of the stock solution, V1 is the volume of the stock solution, M2 is the
concentration of the new solution and V2 is its volume.
M1V1 = M2V2
0.266 M x V1 = 0.075 M x 150 mL
V1 = 42.29 mL
Therefore, we need about 42.29 mL of the 0.266 M of lithium nitrate solution to make 150.0 mL of the 0.075 M lithium nitrate solution.
Answer:
71.7 L
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/Kmol)
T = temperature (K)
According to the information provided in this question;
P = 1 atm (STP)
V = ?
n = 3.2mol
T = 273K (STP)
Using PV = nRT
V = nRT/P
V = 3.2 × 0.0821 × 273/1
V = 71.7 L