Answer:
<u>One lone-Pair is present in Ammonia</u>
<u></u>
Explanation:
The number of valence electron in N = 5
The number of Valence electron in H = 1
The formula of ammonia = NH3
Total valence electron in ammonia molecule = 5 +3(1) = 5+3 = 8
The lewis structure suggest that :
Nitrogen completes its octet by sharing the electron pair with 3 hydrogen atoms.
3 electron of Nitrogen are involved in sharing with Hydrogen
So,<u><em> remaining two electron are left non-bonded</em></u> . Hence they exist as lone- pair
So, there is only 1 lone pair in the ammonia molecule .
The shape of NH3 is bent according to VSEPR theory . This is so because the presence of 1 lone pair causes more repulsion and occupy more space.
Thus the lone pair is changing the shape of the ammonia molecule . It also increase the dipole moment of the molecule , which gives polarity to it.
Answer:
<h3>electrical energy is the energy of Kinetic energy </h3>
Explanation:
<h3>I hope l helped you.</h3>
Answer:
I think the answer is A!!!
Answer:
a) 2.01 g
Explanation:
- Na₂CO₃ (s) + 2AgNO₃ (aq) → Ag₂CO₃ (s) + 2NaNO₃
First we <u>convert 0.0302 mol AgNO₃ to Na₂CO₃ moles</u>, in order to <em>calculate how many Na₂CO₃ moles reacted</em>:
- 0.0302 mol AgNO₃ *
= 0.0151 mol Na₂CO₃
So the remaining Na₂CO₃ moles are:
- 0.0340 - 0.0151 = 0.0189 moles Na₂CO₃
Finally we <u>convert Na₂CO₃ moles into grams</u>, using its <em>molar mass</em>:
- 0.0189 moles Na₂CO₃ * 106 g/mol = 2.003 g Na₂CO₃
The closest answer is option a).