-- Kinetic energy is the energy of mass in motion. The amount is determined by the mass of whatever is moving, and its speed.
-- Potential energy is the energy that's stored up in some form, not being used yet but ready to be used when you want it.
For example, one form of it is <u><em>chemical</em></u><em> </em>potential energy, like in a battery, or a match. You get the energy out of a battery when you connect it to a motor or a light. You get the energy out of as match when you make the tip hot and it flares up.
This question is asking about <u><em>gravitational</em></u> potential energy. An object has stored energy just by being up high, like a bowling ball on a shelf. You get the energy out of it just by dropping it ... possibly enough to crack the floor !
The amount of this kind of potential energy is determined by the mass of the object, and how high up it is.
-- Getting the answers from other people doesn't help you a bit, until you understand them and can answer the question on your own.
Answer:
- Distance is a scalar quantity, defined as the total amount of space covered by an object while moving between the final position and the initial position. Therefore, it depends on the path the object has taken: the distance will be minimum if the object has travelled in a straight line, while it will be larger if the object has taken a non-straight path.
- Displacement is a vector quantity, whose magnitude is equal to the distance (measured in a straight line) between the final position and the initial position of the object. Therefore, the displacement does NOT depend on the path taken, but only on the initial and final point of the motion.
If the object has travelled in a straight path, then the displacement is equal to the distance. In all other cases, the distance is always larger than the displacement.
A particular case is when an object travel in a circular motion. Assuming the object completes one full circle, we have:
- The distance is the circumference of the circle
- The displacement is zero, because the final point corresponds to the initial point
Answer:
8.4335 x 10^-²¹, 1.78204 x 10²⁶
Explanation:
p = mv
p = (5.05 x 10⁶)(1.67 x 10^-²⁷)
p = 8.4335 x 10^-²¹
p = mv
p = (5.98 x 10²⁴)(2.98 x 10)
p = 1.78204 x 10²⁶
Answer:
1) p₀ = 45000 N / s
, p₀ '= 1800
, b) I = -45000 N s
, I = 1800 Ns
Explanation:
Impulse equals the change in momentum
I = Δp
1) the initial moment of the car
p₀ = M v
p₀ = 1500 30
p₀ = 45000 N / s
the change at the moment is
Δp = 45000
because the end the car is stopped
moment of the person
P₀ ’= m v
p₀ '= 60 30
p₀ '= 1800
D₀ '= 1800
2) of the momentum change impulse ratio
car
I = Δp
I = -45000 N s
person
I = Δpo '
I = 1800 Ns
3) the object that give the momentum to stop the wall motoring
The person is stopped by the impulse given by the car
a) This area is the one that absorbs most of the vehicle impulse
be) If using a safety painter, the time during which the greater force will act, therefore the lessons decrease
c) The air bag helps reduction in the speed of the person relatively quickly.
Answer:
5.78amps
Explanation:
Given data
Time t= 57 seconds
Charge Q= 330C
Current I= ??
The expression for the electric current is given as
Q= It
Substituting we have
330= I*57
I= 330/57
I=5.78 amps
Hence the current is 5.78amps