Answer:
96 m
Explanation:
Given,
Initial velocity ( u ) = 4 m/s
Final velocity ( v ) = 20 m/s
Time ( t ) = 8 s
Let Acceleration be " a ".
Formula : -
a = ( v - u ) / t
a = ( 20 - 4 ) / 8
= 16 / 8
a = 2 m/s²
Let displacement be " s ".
Formula : -
s = ut + at² / 2
s = ( 4 ) ( 8 ) + ( 2 ) ( 8² ) / 2
= 32 + ( 2 ) ( 64 ) / 2
= 32 + ( 2 ) ( 32 )
= 32 + 64
s = 96 m
Therefore, it travels 96 m in time 8 s.
Answer:
v = 12.12 m/s
Explanation:
It is given that,
Radius of circle, r = 30 m
The coefficient friction between tires and road is 0.5,
The centripetal force is balanced by the force of friction such that,
v = 12.12 m/s
So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.
See projectiles are very simple unless you understand its core concepts....projectile is nothing just mixture of upward motion and horizontal motion....
THE KEY IS FORGET THE NAME PROJECTILE...ITS JUST HORIZONTAL MOTION + VERTICAL MOTION
Your answer should be 9.7 :)
Answer:
μ = 0.309
Explanation:
coefficient of kinetic friction is defined as the ratio of two forces, friction force and the normal force acting on the object.
θ = arctan(15/100)= 8.531⁰
In the vertical direction:
N = mgcosθ = 100 *9.8 *cos(8.531) = 970N
law of conservation of energy implies
mgsinθ - μNx = 1/2m(v₂²-v₁²)
100*9.8*sin (8.531) - μ(970*2) = 1/2(100)(0²-3²)
150.6 - 1940μ = 450
- 1940μ = -600.6
μ = 0.309