Answer:
14
Step-by-step explanation:
note that (f - g) = f(x) - g(x)
f(x) - g(x) = 3x² + 1 - (1 - x) = 3x² + 1 - 1 + x = 3x² + x
To evaluate (f - g)(2) substitute x = 2 into f(x) - g(x)
(f - g)(2) = 3(2)² + 2 = (3 × 4) + 2 = 12 + 2 = 14
Bisected means to cut something into two parts. 82/2=41
So 41+41=82.
The answer is C.
Answer:
x = 1
x = -5/8 + i* root( 39) / 8
or x = -5/8 - i* root( 39) / 8
Step-by-step explanation:
(x+x)^2 × -(x×(-1))=4+x-x^2
solve for x, show work.
(x+x)^2 × -(x×(-1)) = 4+x-x^2
Simplify:
(2x)^2 * (-(-x)) = 4 + x - x^2
4x*x * (-(-x)) = 4 + x - x*x
4*x*x*x = 4 + x - x*x
4*x*x*x - 4 = x *(1 - x)
4* (xxx - 1) = x * (1- x)
4* (x - 1)*( x*x +x + 1) = x (1 - x)
4( xx + x + 1) = -x
x = 1 is a solution.
4xx + 4x + 4 = -x
4xx + 5x + 4 = 0
x = -5/8 + root(25 - 4*4*4) / 2*4
x = -5/8 + i* root( 39) / 8
or x = -5/8 - i* root( 39) / 8
also x = 1
Answer:
Step-by-step explanation:
Multiply each term of the first polynomial with the second polynomial. Then combine the like terms.
(3a<em>² + 5a - 2)* (5a² -3a + 4)</em>
<em> = 3a² *(5a² -3a + 4) + 5a*(5a² -3a + 4) - 2*(5a² -3a + 4)</em>
<em>=3a²*5a² - 3a*3a² + 4*3a² + 5a*5a² - 3a*5a + 4*5a + 5a²*(-2) - 3a*(-2) + 4*(-2)</em>
<em>=15a⁴ - 9a³ + 12a² + 25a³ - 15a² + 20a - 10a² + 6a - 8</em>
<em>= 15a⁴ </em><u><em>- 9a³ + 25a³</em></u><em> +</em><u><em> 12a² - 15a² - 10a²</em></u><em> +</em><u><em> 20a +6a </em></u><em>- 8</em>
<em>= 15a⁴ + 16a³ - 13a² +26a - 8</em>
Answer: how do you solve for this
Step-by-step explanation: