Answer: True
Solution:
Rearrange the equation to the LHS:
[x^2 + 8x + 16] · [x^2 – 8x + 16] - (x^2 – 16)^2 = 0
Factoring x^2+8x+16
x^2 - 4x - 4x - 16
= (x-4) • (x-4)
= = (x+4)2
So now we have an equation
(x + 4)^2 • (x - 4)^2 - (x^2 - 16)^2 = 0
Step 2: Evaluate the following:
(x+4)2 = x^2+8x+16
(x-4)2 = x^2-8x+16
(x^2-16)2 = x^4-32x^2+256
(x^2+8x+16) (x^2-8x+16 ) - (x^4-32x^2+256 )
0 = 0
Hence True
Hello,
1: dom f=R
2: img f =R
3: 2x²-x-6=2(x²-2x/4+1/46)-6-1/8=2(x-1/4)²-49/8
Vertex=(1/4,-49,8)
4: roots are -3/2 and 2
2(x-1/4)²-49/8=1/8[(4x-1)²-49]=1/8*(4x+6)(4x-8)
5:
From the vertex to ∞
[-1/4 , ∞)
Answer:
This is actually pretty easy just find the intersecting points from the lines
Number of solutions: 2
What are the solutions: (4,5) and (0,-3)
Hopes this helps below if it did please say thanks on the button or make me the brainiest:)
if you do 14-4 which is equal to 10