Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
<u>Answer:</u> The chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This also means that total number of individual atoms on reactant side must be equal to the total number of individual atoms on the product side.
The chemical equation for the reaction of elemental boron and oxygen gas follows:

By Stoichiometry of the reaction:
4 moles of elemental boron reacts with 3 moles of oxygen gas to produce 2 moles of diboron trioxide.
The chemical equation for the reaction of diboron trioxide and water follows:

By Stoichiometry of the reaction:
1 mole of diboron trixoide reacts with 3 moles of water to produce 2 moles of boric acid.
Hence, the chemical equations are written above.