Answer: the false statement is:
The only functional group possible in a hydrocarbon is the double bond
Answer:
The correct option is (d).
Explanation:
It is given that,
1$ = 1500 pesos
We need to convert 360 pesos into dimes
We can convert 360 pesos to dollars as follows:

360 pesos is equal to $0.24
Also, 1 dollar = 10 dimes
We can covert 0.24 dollar to dimes as follows :
0.24 dollar = 10 × 0.24 dimes
0.24 dollar = 2.4 dimes
or
360 pesos = 2.4 dimes
A stable isotope has just<em> the right number of neutrons for the number of protons </em>(the <em>n:p ratio</em>) to hold the nucleus together against the repulsions of the protons.
A radioactive isotope has either too few or too many neutrons for the nucleus to be stable,
The nucleus will then emit <em>alpha, beta, or gamma radiation</em> in an attempt to become more stable.
Answer:
K = 0.2
Explanation:
Based on the chemical dissociation of N₂O₄:
N₂O₄ ⇄ 2NO₂
The equilibrium constant, K, of the reaction is:
K = [NO₂]² / [N₂O₄]
Now, if 20% of N₂O₄ is dissociated, 80% remains as N₂O₄ = 0.8mol/L = 0.8M
as 20% is dissociated, 0.2moles of N₂O₄ were dissociated and 0.2*2 = 0.4mol/L of NO₂ are produced.
Replacing in K:
K = [0.4M]² / [0.8M]
<h3>K = 0.2</h3>
Answer:
The boiling point of a 8.5 m solution of Mg3(PO4)2 in water is<u> 394.91 K.</u>
Explanation:
The formula for molal boiling Point elevation is :

= elevation in boiling Point
= Boiling point constant( ebullioscopic constant)
m = molality of the solution
<em>i =</em> Van't Hoff Factor
Van't Hoff Factor = It takes into accounts,The abnormal values of Temperature change due to association and dissociation .
In solution Mg3(PO4)2 dissociates as follow :

Total ions after dissociation in solution :
= 3 ions of Mg + 2 ions of phosphate
Total ions = 5
<em>i =</em> Van't Hoff Factor = 5
m = 8.5 m
= 0.512 °C/m
Insert the values and calculate temperature change:



Boiling point of pure water = 100°C = 273.15 +100 = 373.15 K

= 373.15 K[/tex]
21.76 = T - 373.15
T = 373.15 + 21.76
T =394.91 K