Answer:
Volcanic degassing of volatiles, including water vapour, occurred during the early stages of crustal formation and gave rise to the atmosphere. When the surface of Earth had cooled to below 100 °C (212 °F), the hot water vapour in the atmosphere would have condensed to form the early oceans.
Explanation:
Answer:
<em>The correct option is d) an ecotone</em>
Explanation:
An ecotone can be described as an area of transition between two different biomes. An estuary can be described as an ecotone where the river water meets the seawater. The freshwater biome mixes with the seawater biome in an estuary. Unique plants and animals are grown in an estuary which are adapted to live in such an environment. The water present in an estuary is termed as brackish water. Hence, the correct option is d.
Answer:
D) In case 1, both PS I and PS II completely lose function; in case 2, a proton gradient is still produced.
Explanation:
The light dependent reaction of photosynthesis, which produces the ATP and NADPH needed in the light independent stage of the process, includes complexes of proteins and pigments called PHOTOSYSTEMS. These photosystems (I and II) are key to the functionality of the light dependent reactions in the thylakoid.
The major pigment present in both photosystems is CHLOROPHYLL A, which absorbs light energy and transfers electrons to the reaction center. Chlorophyll B is only an accessory pigment meaning it can be done without. Hence, if all of the chlorophyll A is inactivated in the algae but leaves chlorophyll B intact as in case 1, both PS I and PS II will lose their function because Chlorophyll A is the major pigment that absorbs light energy in both photosystems.
In case 2, if PS I is inhibited and PS II is unaffected, a PROTON GRADIENT WILL STILL BE PRODUCED because the splitting of water into protons (H+) and electrons (e-) occurs in PSII. Hence, H+ ions can still be pumped into the inner membrane of the thylakoid in order to build a proton gradient even without the occurrence of PS I.
Just like the bacteria, the archaea have evolved a diverse array of metabolic pathways. As extremophiles, their metabolism shows many adaptations to the extreme environments of their habitat. There are facultative and obligate anaerobes and aerobic organisms in this kingdom.