1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bumek [7]
3 years ago
8

A car travels at a speed of 55 kilometers per hour.Find the distance travelled by the car in 12 minutes and 30 seconds.Find the

Answers in meters​
Mathematics
1 answer:
never [62]3 years ago
4 0

Answer:

Step-by-step explanation:

(distance) d = (speed) s * t (time)

                    = 55km/h * 12.30m/s

                    = 11.275 km

                    = 11.275 * 1000

                    = 11275m

You might be interested in
Using the given points, determine the slope. (0, 32) and (100, 212)
Colt1911 [192]
Slope=m=y/x=rise/run=(y1-y2)/(x1-x2)
Labeling the question; 0=x1, 32=y1, 100=x2, 212=y2
so just go ahead and fill the numbers in;
(32-212)/(0-100)=(-180/-100)=1.8
so therefore, the slope is at 1.8
3 0
3 years ago
Read 2 more answers
Pleaseeeee help 50 points + brainliest mark
natka813 [3]

Answer:

A

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
5
m_a_m_a [10]

Answer:

question no proper plz give question in right way

5 0
2 years ago
Please see attachment
Dafna11 [192]

Answer:

a) The value of absolute minimum value = - 0.3536  

b) which is attained at   x = \frac{1}{\sqrt{2} }  

Step-by-step explanation:

<u>Step(i)</u>:-

Given function

                       f(x) = \frac{-x}{2x^{2} +1}     ...(i)

Differentiating equation (i) with respective to 'x'

                     f^{l} = \frac{2x^{2} +1(-1) - (-x) (4x)}{(2x^{2}+1)^{2}  }   ...(ii)

                    f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2}  }

Equating Zero

                   f^{l}(x) = \frac{2x^{2}-1}{(2x^{2}+1)^{2}  } = 0

                 \frac{2x^{2}-1}{(2x^{2}+1)^{2}  } = 0

                2 x^{2}-1 = 0

               2 x^{2} = 1

             x^{2}  = \frac{1}{2}

             x = \frac{-1}{\sqrt{2} }  , x = \frac{1}{\sqrt{2} }

<u><em>Step(ii):</em></u>-

Again Differentiating equation (ii) with respective to 'x'

f^{ll}(x) = \frac{(2x^{2} +1)^{2} (4x) - 2(2x^{2} +1) (4x)(2x^{2}-1) }{(2x^{2}+1)^{4}  }

put

      x = \frac{1}{\sqrt{2} }

f^{ll} (x) > 0

The absolute minimum value at   x = \frac{1}{\sqrt{2} }

<u><em>Step(iii):</em></u>-

The value of absolute minimum value

                         f(x) = \frac{-x}{2x^{2} +1}

                       f(\frac{1}{\sqrt{2} } ) = \frac{-\frac{1}{\sqrt{2} } }{2(\frac{1}{\sqrt{2} } )^{2} +1}

         on calculation we get

The value of absolute minimum value = - 0.3536      

<u><em>Final answer</em></u>:-

a) The value of absolute minimum value = - 0.3536  

b) which is attained at   x = \frac{1}{\sqrt{2} }    

3 0
3 years ago
A circle has a sector with area 33 pi and a central angle of 11/6 pi radians. What is the area of a circle?
Mashutka [201]

Answer:

36π

Step-by-step explanation:

The area of a circle is given as:

A = \pi r^2

where r = radius of the circle

The area of a sector of a circle is given as:

A_s = \frac{\alpha }{2\pi} * \pi r^2

where α = central angle in radians

Since \pi r^2 is the area of a circle, A, this implies that:

A_s = \frac{\alpha }{360}  * A

A circle has a sector with area 33 pi and a central angle of 11/6 pi radians.

Therefore, the area of the circle, A, is:

33 \pi = \frac{\frac{11 \pi}{6} }{2 \pi} * A\\\\33\pi = \frac{11}{12} * A\\\\=> A = \frac{33\pi * 12}{11}\\ \\A = \frac{396 \pi}{11} \\\\A = 36\pi

The area of the circle is 36π.

5 0
3 years ago
Read 2 more answers
Other questions:
  • If cot0= 1.5 find tan0
    14·1 answer
  • If point c divides line ab in the ratio 2 : 3, the coordinates of C are. If point D divers linebackers in the ratio 3 : 2, the c
    5·1 answer
  • The population of bees in a certain field is modeled by the function, f(0) = 100000 x 0.85", where a denotes the
    6·1 answer
  • HELP PLEASE<br><br> what is the slope of the function
    9·1 answer
  • Weight of a parakeet customary unit
    6·1 answer
  • Help me find this out
    10·1 answer
  • ANSWER ALL TO GET ALL POINTS
    9·1 answer
  • Dean had 30 toy whistles.
    15·2 answers
  • Plzzzzzzzzz help meeeeeeeeee
    12·2 answers
  • Write the equation in standard form for a circle that has a diameter with endpoints (8,0) and (-8,0)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!