Area of a square: side^2
Area of a circle: (pi)(radius^2)
A(square)=(10x)^2
A(circle)=(pi)(2x)^2
A(square)=100x^2
A(circle)=(pi)4x^2
Shaded Area=A(square)-A(circle)
Shaded Area=100x^2-(pi)4x^2
=4x^2(25-(pi))
Answer:
Remember the property:
a^-1 = (1/a)^1
and:
(a/b)^n = (a^n)/(b^n)
A table for a function like:
![\left[\begin{array}{ccc}x&f(x)\\&\\&\\&\\&\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%26f%28x%29%5C%5C%26%5C%5C%26%5C%5C%26%5C%5C%26%5Cend%7Barray%7D%5Cright%5D)
Is just completed as:
![\left[\begin{array}{ccc}x&f(x)\\x_1&f(x_1)\\x_2&f(x_2)\\x_3&f(x_3)\\x_4&f(x_4)\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%26f%28x%29%5C%5Cx_1%26f%28x_1%29%5C%5Cx_2%26f%28x_2%29%5C%5Cx_3%26f%28x_3%29%5C%5Cx_4%26f%28x_4%29%5Cend%7Barray%7D%5Cright%5D)
So, here we have:
y = f(x) = (1/6)^x
To complete the table, we need to find:
f(-1)
and
f(2)
So let's find these two values:
f(-1) = (1/6)^-1 = (6/1)^1 = 6
and the other value is:
f(2) = (1/6)^2 = 1/36
Then the complete table is:
![\left[\begin{array}{ccc}x&f(x)\\-2&36\\-1&6\\0&1\\1&1/6\\2&1/36\\1&1/216\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%26f%28x%29%5C%5C-2%2636%5C%5C-1%266%5C%5C0%261%5C%5C1%261%2F6%5C%5C2%261%2F36%5C%5C1%261%2F216%5Cend%7Barray%7D%5Cright%5D)
Answer:
a) experimental: 164/500 = 41/125, which is 0.328
b) theoretical: 2/6 = 1/3, which is 0.333333....
c) the first answer, small difference
Step-by-step explanation:
It would be 5/8 because 1/4 is = to 2/8