1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timofeeve [1]
3 years ago
15

There are two triangles. One has a base of 8cm and the height of 10 cm the other has a base of 5cm and a height of 13cm which tr

iangle has a larger area
Mathematics
1 answer:
mina [271]3 years ago
4 0

Answer:

The first triangle is larger

Step-by-step explanation:

(1/2)(8)(10)=40

(1/2)(5)(13)=32.5

You might be interested in
Could someone help me bc idkk how this works
dmitriy555 [2]

Answer:

the answer is 2.

Step-by-step explanation:

This is because the interest rate is if he had $1 in the account for a year you would add the 18% or in decimel form 0.0018 do that to the 15th to get 15 years and multiply that by 5000 because that was the ammount of money he put in so 5000(1*0.0018)15 or 0.0018^15*5000

5 0
3 years ago
Help!
inessss [21]

Answer:

2 inches is the height of the box.

Step-by-step explanation:

4 0
2 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
The length, l, of a rectangle is 3 times its width. The perimeter of the rectangle is greater than 48 centimeters. Which inequal
lana [24]
L>18
18/3 = 6
6(2) + 18(2) = 48
8 0
3 years ago
W* <img src="https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B6%7D" id="TexFormula1" title="\frac{5}{6}" alt="\frac{5}{6}" align="absmid
evablogger [386]

Answer:

5/6 w

Step-by-step explanation:

reorder the terms ( use the commuative property)

5/6 w

so the answer is 5/6 w

7 0
3 years ago
Other questions:
  • Harriet is cultivating a strain of bacteria in a petri dish. Currently, she has 103 bacteria in the dish. The bacteria divide ev
    12·2 answers
  • A nurse is making identical first aid bags for patients using 72 antiseptic wipes, 55 adhesive bandages, and 36 packets of ointm
    13·1 answer
  • Combine like terms <br> 20b + 10a - 10b + 3a
    9·2 answers
  • A rectangle with an area of 120 in squared has a length of 8 inches longer then two times its width what is the width of the rec
    13·1 answer
  • What is the volume of a rectangular prism 6 m by 2 m by 10 m
    11·1 answer
  • Which right prism would have the same volume as a square prism with a base area of 36 m2 and a height of 3 m?
    7·1 answer
  • Plz i need this done quick thx
    6·1 answer
  • PLEASE HELP WILL GIVE BRAINLIEST
    14·1 answer
  • Find 20% out of 55<br> plzzzzzzz
    9·1 answer
  • The length of a rectangle is 3 less than 2 times its width. The area of the rectangle is 77 squared feet.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!