Answer:
First part: The new volume of the gas is 1786 Liters.
Second part: The temperature required to change the volume of the gas sample is 347 °C
Explanation:
We assume the Charles - Gay Lussac law where, in constant pressure, volume of a gas changes directly proportional to Temperature (in Kelvin)
V1 / T1 = V2/T2
37°C + 273 = 310 K
82°C + 273 = 355 K
1560L / 310°K = V2 / 355K
(1560 / 310) . 355 = V2
1786 L = V2
1560 L / 310 K = 3120 L / T2
T2 = 3120 L . (310 K / 1560 L)
T2 = 620 K
620K - 273 = 347°C
Answer:
The product is significantly impure
Explanation:
In order to test for the purity of a specific sample that was synthesized, the melting point of a compound is measured. Basically speaking, the melting point identifies how pure a compound is. There are several cases that are worth noting:
- if the measured melting point is significantly lower than theoretical, e. g., lower by 3 or more degrees, we conclude that our compound contains a substantial amount of impurities;
- wide range in the melting point indicates impurities, unless it agrees with the theoretical range.
Since our compound is even 10 degrees Celsius lower than expected, it indicates that the compound is significantly impure.
Answer:
I think it’s D
Explanation:
Chemical strength, Chemical compounds have energy contained in their bonds. Chemical energy may be emitted in the form of heat during a chemical reaction, which is known as an exothermic reaction. The body transforms the chemical energy in food into mechanical energy and heat.
Answer:
See explanation
Explanation:
According to Louis de Broglie, matter has an associated wavelength. He was the first scientist to establish the idea of wave-particle duality or wave- particle paradox.
The display of wavelike properties by objects in the universe is dependent on the magnitude of the of the mass of the body. Small objects have a large associated wavelength and can be described completely by quantum mechanics.
A buckyball with a mass of 1.2 x 10-21 g, 0.7 nm wide, moving at 38. m/s has a very small mass and significant associated wavelength hence the system can be completely described by quantum mechanics.
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.