The axial positions the bond angle is 120 degrees and in equatorial positions the bond angle is 90 degrees.
Functional groups on central atom gets reduce if lone pairs are added.
Explanation:
The number of lone pairs and base pairs of electrons tells the geometry of the molecule.
VSEPR Theory helps to know the lone pairs and bond pair electrons on the centre atom of the molecule.
Example of molecule containing 5 electron pairs can have four bond pairs and 1 lone pair.
eg: Cl
the repulsion is shown as
lp-lp> lp-bp>bp-bp
These are in equatorial position because of the repulsion of lone pairs.
It can have 2 lone pairs and 3 bond pairs. eg. Xe
Lone pairs in this is also in equatorial position as
lp-lp> lp-bp> bp-bp
In axial positions the bond angle is 120 degrees
in equatorial positions the bond angle is 90 degrees, due to the repulsion in lone pair of electrons.
If 1 lone pair is there it can be replaced by bonding with hydrogen.
If 2 lone pairs are there then bonding with oxygen is there. The covalent bond is formed.
An electric motor produces heat while running. The amount of heat is roughly equivalent to the amount of power delivered to the motor.
Answer:
Saturn
Explanation:
One whole orbit is a year on earth. Well it takes Saturn 10,759 days to make one whole orbit. It takes Jupiter 4,333 days to make a whole orbit.
Answer:
4.81×10¹⁰ atoms.
Explanation:
We'll begin by converting 3.2 pg to Ca to grams (g). This can be obtained as follow:
1 pg = 1×10¯¹² g
Therefore,
3.2 pg = 3.2 pg × 1×10¯¹² g / 1 pg
3.2 pg = 3.2×10¯¹² g
Therefore, 3.2 pg is equivalent to 3.2×10¯¹² g
Next, we shall determine the number of mole in 3.2×10¯¹² g of Ca. This can be obtained as follow:
Mass of Ca = 3.2×10¯¹² g
Molar mass of Ca = 40.08 g/mol
Mole of ca=.?
Mole = mass /molar mass
Mole of Ca = 3.2×10¯¹² / 40.08
Mole of Ca = 7.98×10¯¹⁴ mole.
Finally, we shall determine the number of atoms present in 7.98×10¯¹⁴ mole of Ca. This can be obtained as illustrated below:
From Avogadro's hypothesis,
1 mole of Ca contains 6.02×10²³ atoms.
Therefore, 7.98×10¯¹⁴ mole of Ca will contain = 7.98×10¯¹⁴ × 6.02×10²³ = 4.81×10¹⁰ atoms.
Therefore, 3.2 pg of Ca contains 4.81×10¹⁰ atoms.