Answer:
x = -5, and y = -6
Step-by-step explanation:
Suppose that we have two equations:
A = B
and
C = D
combining the equations means that we will do:
First we multiply both whole equations by constants:
k*(A = B) ---> k*A = k*B
j*(C = D) ----> j*C = j*D
And then we "add" them:
k*A + j*C = k*B + j*D
Now we have the equations:
-x - y = 11
4*x - 5*y = 10
We want to add them in a given form that one of the variables cancels, so we can solve it for the other variable.
Then we can take the first equation:
-x - y = 11
and multiply both sides by 4.
4*(-x - y = 11)
Then we get:
4*(-x - y) = 4*11
-4*x - 4*y = 44
Now we have the two equations:
-4*x - 4*y = 44
4*x - 5*y = 10
(here we can think that we multiplied the second equation by 1, then we have k = 4, and j = 1)
If we add them, we get:
(-4*x - 4*y) + (4*x - 5*y) = 10 + 44
-4*x - 4*y + 4*x - 5*y = 54
-9*y = 54
So we combined the equations and now ended with an equation that is really easy to solve for y.
y = 54/-9 = -6
Now that we know the value of y, we can simply replace it in one of the two equations to get the value of x.
-x - y = 11
-x - (-6) = 11
-x + 6 = 11
-x = 11 -6 = 5
-x = 5
x = -5
Then:
x = -5, and y = -6
Answer:
0.7486 = 74.86% observations would be less than 5.79
Step-by-step explanation:
I suppose there was a small typing mistake, so i am going to use the distribution as N (5.43,0.54)
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
The general format of the normal distribution is:
N(mean, standard deviation)
Which means that:

What proportion of observations would be less than 5.79?
This is the pvalue of Z when X = 5.79. So



has a pvalue of 0.7486
0.7486 = 74.86% observations would be less than 5.79
Answer:
Your answer is 7
Hope this helps!
Step-by-step explanation:
You plug 14 in for x then just do 14-7 and you will get 7
Answer:
average speed for the entire trip is 15 mph
Step-by-step explanation:
Let x be the uphill speed and y be the downhill speed.
We have been given that
Speed of Omar in uphill to reach gift store = x =10 mph
Speed of Omar in downhill to reach his home = y = 30 mph
We know the formula for average speed for the entire trip

Therefore, average speed is 15 mph