Answer:pls is it all we are to ans
Step-by-step explanation:
We have the following function:
f(t) = −16t2 + 34t + 546
By definition, the average rate of change is:
Avr = (f (t2) - f (t1)) / (t2 - t1)
We have then:
For t1 = 5:
f (5) = -16*(5)^2 + 34*(5) + 546
f (5) = 316
For t2 = 5:
f (7) = -16*(7)^2 + 34*(7) + 546
f (7) = 0
Substituting values:
Avr = (0 - 316) / (7 - 5)
Avr = -158
Answer:
The average rate of change of f (t) from t = 5 seconds to t = 7 seconds is -158 feet per second.
The probability that all of the next ten customers who want this racket can get the version they want from current stock is 0.821
<h3>How to solve?</h3>
Given: currently has seven rackets of each version.
Then the probability that the next ten customers get the racket they want is P(3≤X≤7)
<h3>Why P(3≤X≤7)?</h3>
Note that If less than 3 customers want the oversize, then more than 7 want the midsize and someone's going to miss out.
X ~ Binomial (n = 10, p = 0.6)
P(3≤X≤7) = P(X≤7) - P(X≤2)
From Binomial Table:
= 0.8333 - 0.012
= 0.821
To learn more about Probability visit :
brainly.com/question/25870256
#SPJ4
Answer:
see explanation
Step-by-step explanation:
(a)
Given y is directly proportional to x then the equation relating them is
y = kx ← k is the constant of proportion
To find k use the condition when x = 3, y = 18 , then
18 = 3k ( divide both sides by 3 )
6 = k
y = 6x ← equation of proportion
(b)
(i)
when x = 12 , then
y = 6 × 12 = 72
(ii)
when y = 42
42 = 6x ( divide both sides by 6 )
7 = x
__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)____φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)v__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)