Answer:
YZ = XZ
Step-by-step explanation:
Perpendicular Bisector:
A perpendicular bisector of a line segment 'l' is a line that is perpendicular to the line segment 'l' and cuts the line segment 'l' into two equal parts.
Given:
1. A triangle WXY.
2. A perpendicular bisector from vertex W that intersects XY at point Z.
Conclusion based on the drawing:
a. Z is the midpoint of the line segment XY because point Z lies on the perpendicular bisector of XY.
b. Hence, XZ = YZ.
Answer:
Step-by-step explanation
if my answer is wrong i'm sorry here is a manual on how to do it if its wrong
i think they are right but just in case
Identify the output values. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to two or more outputs, do not classify the relationship as a function.
1 relation
2 function
3 relation
4 function
i know 4 is right but i don't know about others double check i suggest just in case i think they are right
First write it in vertex form :-
y= a(x - 2)^2 + 3 where a is some constant.
We can find the value of a by substituting the point (0.0) into the equation:-
0 = a((-2)^2 + 3
4a = -3
a = -3/4
so our equation becomes y = (-3/4)(x - 2)^2 + 3