Let the slower runners speed be X kilometers per hour.
Then the faster runners speed would be X+2 kilometers per hour.
The formula for distance is Speed times time.
The distance is given as 30 kilometers and time is given as 3 hours.
Since there are two runners you need to add the both of them together.
The equation becomes 30 = 3x + 3(x+2)
Now solve for x:
30 = 3x + 3(x+2)
Simplify:
30 = 3x + 3x +6
30 = 6x + 6
Subtract 6 from each side:
24 = 6x
Divide both sides by 6:
x = 24/6
x = 4
The slower runner ran at 4 kilometers per hour.
The faster runner ran at 4+2 = 6 kilometers per hour.
You figure out how long it would take a car traveling at 25 mph
to cover 360 ft. Any driver who does it in less time is speeding.
(25 mi/hr) · (5,280 ft/mile) · (1 hr / 3,600 sec)
= (25 · 5280 / 3600) ft/sec = (36 and 2/3) feet per second.
To cover 360 ft at 25 mph, it would take
360 ft / (36 and 2/3 ft/sec) = 9.82 seconds .
Anybody who covers the 360 feet in less than 9.82 seconds
is moving faster than 25 mph.
_________________________________
If you're interested, here's how to do it in the other direction:
Let's say a car covers the 360 feet in ' S ' seconds.
What's the speed of the car ?
(360 ft / S sec) · (1 mile / 5280 feet) · (3600 sec/hour)
= (360 · 3600) / (S · 5280) mile/hour
= 245.5 / S miles per hour .
The teacher timed one car crossing both strips in 7.0 seconds.
How fast was that car traveling ?
245.5 / 7.0 = 35.1 miles per hour
Another teacher timed another car that took 9.82 seconds to cross
both strips. How fast was this car traveling ?
245.5 / 9.82 = 25 miles per hour
Fraction would be 30/100 and decinal would be .30 and ratio would be 30/100
Step-by-step explanation:
5(2h+8) <60
10h +40< 60
10h + 40-40 < 60-40
10h < 20
10h/10 < 20/10
h < 2