<u></u> corresponds to TR. correct option b.
<u>Step-by-step explanation:</u>
In the given parallelogram or rectangle , we have a diagonal RT . We need to find which side is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side TU:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side TU with RT.
<u>Side TR:</u>
Since, direction of sides are not mentioned here , we can say that TR & RT is parallel & equal to each other . So , TR is in correspondence with side/Diagonal RT of parallelogram URST .
<u>Side UR:</u>
In triangle UTR , we see that TR is hypotenuse and is the longest side among UR & TU . So , TR can never be equal in length to UR & TU . So there's no correspondence of Side UR with RT.
Answer:
0.00187393
Hope this helps! :)
Please mark me the Brainliest!
Option A:
Solution:
Given data:
Center of the circle is (5, 3).
Radius of the circle = 4
To find the equation of the circle:
The general form of the equation of a circle in centre-radius format is
where (h, k) is the centre of the circle and r is the radius of the circle.
Substitute the given values in the equation of a circle formula:
The equation of the given circle is .
Hence Option A is the correct answer.