Answer:
The characteristic of water that makes this liquid stick to the side of a test tube is called capillarity (Claim).
Explanation:
Water (H₂O) is a polar molecule with the ability to generate van der Waals forces, which is explained by the 4 hydrogen bonds it forms to bind to other substances. The consequence of the forces of the molecular bonds are four properties of H₂O, including surface tension, cohesion, adhesion and capillarity.
- <u>Claim</u>: The characteristic of water that makes this liquid stick to the side of a test tube is called capillarity.
- <u>Evidence</u>: Cohesion and adhesion of water are properties that come from the forces of the molecular bonds of water, and whose effect is the ability of water to wet surfaces and adhere to a tube that contains it, the latter due to capillarity. Capillarity also allows water to rise through the roots and stems of plants, through their thin vascular ducts.
- <u>Reasoning</u>: <u>cohesion</u> in water depends on the force of attraction between H₂O molecules, <u>adhesion</u> is the capacity of H₂O molecules to join other different molecules and —together with <u>surface tension</u>— make H₂O molecules close to the walls of a glass tube adhere to it, which represents capillarity.
The effect of capillarity is more evident when the test tube is of a smaller diameter, although capillarity and adhesion to its walls always exist, and to a greater degree than any other substance.
If the inner lining of the air sacs neither thin nor highly vascularized, then it can be inferred that AIR SACS ARE CANNOT BE THE SITES OF GASEOUS EXCHANGE BETWEEN AIR AND BLOOD. Air sacs are generally lined with mucus and surrounded with blood capillaries.
In case of birds, air sacs play an important role in respiratory system.
The chemical reactions in the cell would not happen as fast and would require more energy to catalyze the reaction between the two reactants.
Mark brainliest if I helped you
Chemistry/ Example: Take breathing for example, when you breath you breath out carbon dioxide. The CO2 can't just leave like that and only 10% binds to hemoglobin. The rest turns into carbonic acid in your blood and its plasma. However, the acid is unstable, so it turns into bicarbonate and a dissociated proton (H). You have carbonic anhydrase that converts the two so you can breath out CO2; the carbonic acid separates into H2O and CO2. This process would take a LONG time without the enzyme-- CO2 build up, even minimal amounts it lethal.
Answer:

Explanation:
Waves affect the ocean by creating disturbances that move energy through the water.
As the wind blows on the surface of the ocean, waves are created that transmit energy through the water from a starting point to an end point.