Answer:
G. <3 and <5 hope this helps
Answer:
300
Step-by-step explanation:
5fg
5(6)(10)=300
The general form of a quadratic (second degree) equation is

, where

is called the Discriminant.
The Discriminant determines how many roots the equation will have as follows:
i) if D>0, the equation has 2 roots.
ii) if D=0, the equation has 1 double root.
iii) if D<0, the equation has no roots.
In our equation,

, a=1, b=-5, c=7
so the discriminant is D=(-5)^2-4*1*7=25-28<0
Thus the equation has no roots.
Remark: the equation has no roots in the Real numbers, but it has 2 roots in a larger set of numbers to be discussed in the future, the Complex numbers.
Answer: A is 32.5
B is 162.5
Step-by-step explanation:
so what i did was that i divided 65/13 and i got 5 and then i divided 5/2 and got 2.5 and then i multiplied 13 and 2.5 and got 32.5 and then i divided 32.5 and 2.5 and got 65 and then i multiplied 65 and 2.5 and got 162.5
hope that helped!
good luck :)
1- The circumcenter refers to the central point or focal point of the circle which experiences the three vertices of the triangle. Review that all radii of a circle are congruent, i.e. equivalent to each other. So this is the reason the circumcenter is equidistant from the vertices of the triangle. The perpendicular bisectors are used to form the circumcenter, so the concurrency of perpendicular bisector theorem also explains.
2- The picture is not given.
3-The answer is right triangle.
In a right triangle, midpoint of hypotenuse is at equal distance from all the 3 vertices. So that is focal point of the circle going through all its 3 vertices. A right-angled triangle is a triangle which have one right angle. The connection between the sides and points of a right triangle is the reason for trigonometry. The side which lies as the opposite to the right angle is known as the hypotenuse.
4- The coordinates of the circumcenter of ABC with the vertices A(0,0), B(3,0), and C(3,2) is (1.5,1)
For the given triangle, vertex A lies on starting point; Vertex B lies on x-axis; and vertex C lies on hold parallel to y-axis. ==> AB along x-axis and BC opposite to AB. So the triangle ABC is a right triangle with its vertex B = 90 deg and AC has the hypotenuse. For a right triangle its circumcentre is the midpoint of hypotenuse. Consequently here the midpoint of AC = (1.5, 1), is the circumcenter of the triangle ABC.