1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
seraphim [82]
2 years ago
14

Tomato soap - serves 6

Mathematics
1 answer:
Ivahew [28]2 years ago
4 0

Step-by-step explanation:

We see that the ingredients and their respective measurements serve 6 people. There are numerous ways you can solve this, here's one way.

You need the 15 servings and you have the recipe for 6. You can use these values to create a scale factor. To do this, you just divide the intended number of servings by the number of servings the recipe gives you.

This leads to:

15 servings / 6 servings = 2.5

Since this scale factor has no units (the unit of "servings" cancels out through division), you can apply it to all measurements. Meaning, you can multiply each measurement by the scale factor of 2.5.

This gives you:

75 g butter

2.5 onions

5 tablespoons flour

3 liters tomato juice

1200 ml milk

You might be interested in
what is the answer here 90 student went to the zoo, 3 had hamburger milk and cake; had 5 milk and hamburger; 10 had cake and mil
dangina [55]

Answer:

a) 37

b) 2

c) 17

d) 8

Step-by-step explanation:

90 Students went to the zoo. 3 had hamburger, milk and cake; 5 had milk and hamburger, 10 had cake and milk; 8 had cake and hamburger; 24 had hamburger; 38 had cake; 20 had milk. How many had a. nothing b. cake only c. milk only d. hamburger only

Solution:

Let h represent students that ate hamburger, m represent students that had milk and c represent students that had cake.

Given that:

n(h ∩ m ∩ c) = 3, n(m ∩ h) = 5, n(c ∩ m) = 10, n(c ∩ h) = 8, n(h) = 24, n(c) = 38, n(m) = 20

The number of students that had nothing = n(h  ∪ m ∪ C)'

The number of students that had only milk = n(m ∩ h' ∩ C')

The number of students that had only cake = n(m' ∩ h' ∩ C)

The number of students that had only hamburger = n(m' ∩ h ∩ C')

a) n(m ∩ h' ∩ C') = n(m) - n(m ∩ h) - n(c ∩ m) - n(h ∩ m ∩ c) = 20 - 5 - 10 - 3 = 2

n(m' ∩ h ∩ C') = n(h) - n(m ∩ h) - n(c ∩ h) - n(h ∩ m ∩ c) = 24 - 5 - 8 - 3 = 8

n(m' ∩ h' ∩ C) = n(m) - n(m ∩ c) - n(c ∩ h) - n(h ∩ m ∩ c) = 38 - 10 - 8 - 3 = 17

n(m ∩ h' ∩ C') + n(m' ∩ h ∩ C') + n(m' ∩ h' ∩ C) + n(h  ∪ m ∪ C)' + n(h ∩ m ∩ c) + n(m ∩ h) + n(c ∩ m) + n(c ∩ h) = 90

2 + 8 + 17 + 5 + 10 + 8 + 3 + n(h  ∪ m ∪ C)' = 90

53 + n(h  ∪ m ∪ C)' = 90

n(h  ∪ m ∪ C)' = 37

b) n(m' ∩ h' ∩ C) = 17

c) n(m ∩ h' ∩ C') = 2

d) n(m' ∩ h ∩ C') = 8

4 0
2 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
2 years ago
Read 2 more answers
Select all that apply. A point is translated right 6 units and reflected over the x-axis. How will the coordinates change? The y
Ira Lisetskai [31]

Answer:

B and D

Step-by-step explanation:

7 0
2 years ago
How do you divide a decimal by a whole fraction
Otrada [13]

Answer

wherever the decimal is, put it directly on top of the dividing line thing. Now that the decimal looks like a regular whole number you can divide like you usually would. Whenever you do regular long division, your answer is always going to be on the top of the line. Your answer should have a decimal in it ... and that should be your answer.

7 0
3 years ago
Help...this is due in a few hours
Mrrafil [7]

Answer:

21

Step-by-step explanation:

14+7=21.

You do this to allow you to get that outcome, because you know 7*7=49.

Therefore 21-14=7

7*-7=49

6 0
3 years ago
Other questions:
  • Twenty-four crackers contain 360 Calories. Find the unit rate in Calories per cracker. The unit rate in Calories per cracker is​
    10·1 answer
  • Mrs. Bailey gives a test, and her students’ scores range from 30 to 70. She decides to curve the scores, so that they range from
    12·1 answer
  • bell's cell phone coasts $18 pre month plus $0.15 for every minute she uses the phone last month her bill was $29.25 for how man
    6·1 answer
  • Identify the x- and y-intercepts of the graph.<br> y = (x − 1)2
    13·1 answer
  • Giving away free points lol<br> what’s 9 - 7
    13·2 answers
  • The function g is a transformation of f. If g has a y-intercept at 4, which of the following functions could represent g?
    8·1 answer
  • I GIVEEEE BRSINLILST
    8·1 answer
  • I know how to find the distance of two coordinates but not three could someone help me on this??
    11·2 answers
  • 1.. Find c.<br> please help asap
    8·1 answer
  • What is the equation of a line that is parallel to the given line and passes through the point (-2,2)
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!