1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
2 years ago
10

rmula1" title="\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx" alt="\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx" align="absmiddle" class="latex-formula">
Mathematics
2 answers:
Ludmilka [50]2 years ago
8 0

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

liq [111]2 years ago
8 0

First integrate the indefinite integral,

\int(1-x^2)^{3/2}dx

Let x=\sin(u) which will make dx=\cos(u)du.

Then

(1-x^2)^{3/2}=(1-\sin^2(u))^{3/2}=\cos^3(u) which makes u=\arcsin(x) and our integral is reshaped,

\int\cos^4(u)du

Use reduction formula,

\int\cos^m(u)du=\frac{1}{m}\sin(u)\cos^{m-1}(u)+\frac{m-1}{m}\int\cos^{m-2}(u)du

to get,

\int\cos^4(u)du=\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{4}\int\cos^2(u)du

Notice that,

\cos^2(u)=\frac{1}{2}(\cos(2u)+1)

Then integrate the obtained sum,

\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int\cos(2u)du+\frac{3}{8}\int1du

Now introduce s=2u\implies ds=2du and substitute and integrate to get,

\frac{3\sin(s)}{16}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int1du

\frac{3\sin(s)}{16}+\frac{3u}{4}+\frac{1}{4}\sin(u)\cos^3(u)+C

Substitute 2u back for s,

\frac{3u}{8}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\sin(u)\cos(u)+C

Substitute \sin^{-1} for u and simplify with \cos(\arcsin(x))=\sqrt{1-x^2} to get the result,

\boxed{\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C}

Let F(x)=\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C

Apply definite integral evaluation from b to a, F(x)\Big|_b^a,

F(x)\Big|_b^a=F(a)-F(b)=\boxed{\frac{1}{8}(a\sqrt{1-a^2}(5-2a^2)+3\arcsin(a))-\frac{1}{8}(b\sqrt{1-b^2}(5-2b^2)+3\arcsin(b))}

Hope this helps :)

You might be interested in
If 6.2a=0.0143 then what is a?​
Evgesh-ka [11]

6.2a = 0.0143

=> a = 0.0143/6.2

=> a = 0.0023......

3 0
2 years ago
50 points ! marking brainly to whoever gets all 5 correct !
Svetradugi [14.3K]

1. 5

2. 7-3 root 3

3. 6

4. 4.24

5. 5.76

3 0
3 years ago
Identify this conic section. 16y = x^2
kiruha [24]

ANSWER

A parabola.

EXPLANATION

The given conic is :

16y =  {x}^{2}

This can be rewritten as:

{x}^{2}  = 16y

{x}^{2}  = 4(4)y

This is a parabola with the vertex at the origin.

The foci is (0,4)

Therefore the given conic section is a parabola that has an axis of symmetry parallel to the y-axis.

7 0
3 years ago
Help Look at image!!
faust18 [17]

Answer:

3/4

Step-by-step explanation:

Use the rise over run equation

5 0
3 years ago
Read 2 more answers
There were 6 seventh graders on a middle school wrestling team. The
zimovet [89]

Answer:

-6 negative six

Step-by-step explanation:

3- 2 - 1 - 4 + 2 - 4= -6

4 0
2 years ago
Other questions:
  • Write the algebraic expression that is the model of 3 boxes labeled x, 2 boxes labeled y and 4 boxes without a label
    6·1 answer
  • Determine if the solution set for the system of equations shown is the empty set, contains one point or is infinite.
    9·1 answer
  • The probability of an event A occurring is 0.73. Determine . P(A) a)0.73 b)0.00 c)0.27 d)1.00
    10·2 answers
  • Explain the dimensions of descriptive statistics in special education
    5·1 answer
  • Which of the following expressions is equivalent to 6x + 24?
    12·1 answer
  • Awnser in the picture <br><br> btw this question is hard so work carefully
    15·1 answer
  • What determines the color of light?<br> wavelength<br> reflection rate<br> brightness<br> amplitude
    11·2 answers
  • A pedestal for a statue is made with 405 cubic feet of concrete. What is the area of the base of the pedestal? 6.7 square feet 2
    6·2 answers
  • We use the inverse of the multiplication of the constant to isolate the variable We do this using property of equality:
    6·2 answers
  • What is the solution of x+8=13
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!