1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nuetrik [128]
2 years ago
10

rmula1" title="\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx" alt="\int\limits^a_b {(1-x^{2} )^{3/2} } \, dx" align="absmiddle" class="latex-formula">
Mathematics
2 answers:
Ludmilka [50]2 years ago
8 0

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

liq [111]2 years ago
8 0

First integrate the indefinite integral,

\int(1-x^2)^{3/2}dx

Let x=\sin(u) which will make dx=\cos(u)du.

Then

(1-x^2)^{3/2}=(1-\sin^2(u))^{3/2}=\cos^3(u) which makes u=\arcsin(x) and our integral is reshaped,

\int\cos^4(u)du

Use reduction formula,

\int\cos^m(u)du=\frac{1}{m}\sin(u)\cos^{m-1}(u)+\frac{m-1}{m}\int\cos^{m-2}(u)du

to get,

\int\cos^4(u)du=\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{4}\int\cos^2(u)du

Notice that,

\cos^2(u)=\frac{1}{2}(\cos(2u)+1)

Then integrate the obtained sum,

\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int\cos(2u)du+\frac{3}{8}\int1du

Now introduce s=2u\implies ds=2du and substitute and integrate to get,

\frac{3\sin(s)}{16}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\int1du

\frac{3\sin(s)}{16}+\frac{3u}{4}+\frac{1}{4}\sin(u)\cos^3(u)+C

Substitute 2u back for s,

\frac{3u}{8}+\frac{1}{4}\sin(u)\cos^3(u)+\frac{3}{8}\sin(u)\cos(u)+C

Substitute \sin^{-1} for u and simplify with \cos(\arcsin(x))=\sqrt{1-x^2} to get the result,

\boxed{\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C}

Let F(x)=\frac{1}{8}(x\sqrt{1-x^2}(5-2x^2)+3\arcsin(x))+C

Apply definite integral evaluation from b to a, F(x)\Big|_b^a,

F(x)\Big|_b^a=F(a)-F(b)=\boxed{\frac{1}{8}(a\sqrt{1-a^2}(5-2a^2)+3\arcsin(a))-\frac{1}{8}(b\sqrt{1-b^2}(5-2b^2)+3\arcsin(b))}

Hope this helps :)

You might be interested in
Write an equation in slope-intercept from the line with slope 3/5 and y-intercept 1 . Then graph the line.
never [62]

Answer:

y=(3/5)x+1

Step-by-step explanation:

Slope-intercept form of a line is as follows

y=mx+c, where m is the slope of the line and c is the y intercept.

Hence the equation of the line is y=(3/5)x+1

3 0
2 years ago
A manufacturer reported a sample mean = 22.0 g and a sample standard deviation = 2.5 g based on a sample of 20 of their products
tester [92]

Answer:

n=(\frac{1.640(2.5)}{2})^2 =4.2 \approx 5

So the answer for this case would be n=5 rounded up to the nearest integer

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

\bar X=22 represent the sample mean

\mu population mean (variable of interest)

s=2.5 represent the sample standard deviation

n represent the sample size  

ME = 2 represent the margin of error accepted

Solution to the problem

The confidence interval for the mean is given by the following formula:

\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}   (1)

The margin of error is given by this formula:

ME=z_{\alpha/2}\frac{\sigma}{\sqrt{n}}    (2)

And on this case we have that ME =2 and we are interested in order to find the value of n, if we solve n from equation (2) we got:

n=(\frac{z_{\alpha/2} s}{ME})^2   (3)

We can use as estimator for the population deviation the sample deviation \hat \sigma = s

The critical value for 90% of confidence interval now can be founded using the normal distribution. And in excel we can use this formla to find it:"=-NORM.INV(0.05;0;1)", and we got z_{\alpha/2}=1.640, replacing into formula (3) we got:

n=(\frac{1.640(2.5)}{2})^2 =4.2 \approx 5

So the answer for this case would be n=5 rounded up to the nearest integer

6 0
3 years ago
Kim drives 156 miles from Rotherham to London.
masya89 [10]
No. See, you can take 60 out of 156 twice and you are left with 36. This means the drive would take about 2 hours and 36 minuets. 7+2=9 30+36=66 so then you add an our the time and you get that she would arrive a few minuets afterwards. (I'm sorry if I didn't explain this very well)
4 0
3 years ago
Read 2 more answers
3/4k + 3/8k = 1/2<br> solve for k please
vlabodo [156]

Answer:

K = 4/9

Step-by-step explanation:

4 0
3 years ago
Which scenario best matches the linear relationship expressed in the equation y=-14+1700
Elden [556K]

Question:

Which scenario best matches the linear relationship expressed in the equation y = –14x + 1,700?

1) Kent has $1,700 in his bank account and spends $14 each week.

2) Kent has $1,700 in his bank account and deposits $14 each week.

3) Kent had $1,700 in his bank account and deposited another $14.

4) Kent has $14 in his bank account and spent $1,700.

Answer:

Option  1) Kent has $1,700 in his bank account and spends $14 each week.

Step-by-step explanation:

Let x denote the number of weeks.

Option 1: Kent has $1,700 in his bank account and -14x as the negative sign denotes how much amount he spend each week.

Thus, Option 1 is the correct answer.

Option 2: Kent has $1,700 in his bank account and deposits $14 each week.

Writing it as equation, we have, y=14x+1700 which is not the expressed linear equation.

Hence,  Option 2 is not the correct answer.

Option 3: Kent had $1,700 in his bank account and deposited another $14.

Writing it as equation, we have, y=14+1700 which is not the expressed linear equation.

Hence,  Option 3 is not the correct answer.

Option 4: Kent has $14 in his bank account and spent $1,700.

Writing it as equation, we have, y=14-1700 which is not the expressed linear equation.

Hence,  Option 4 is not the correct answer.

Thus, the scenario that matches the linear equation relationship expressed in the equation is Option 1.

The answer is Kent has $1,700 in his bank account and spends $14 each week.

4 0
3 years ago
Other questions:
  • The population of a town increased by 10% per year in 2009, 2010, and 2011. If the population of the town at the beginning of 20
    5·1 answer
  • Can i please get help with this question?
    5·1 answer
  • 13. If the radius of a cylinder is decreased by
    11·2 answers
  • Don't mind my work but can someone give the answer for 50
    9·2 answers
  • If x = 5, y = 3 and z = 2 then xz (4y - 2z) 
    15·1 answer
  • Looking at angle DEF which statement is true
    10·1 answer
  • PLEASE HELP!! Find mCFD<br> 180°<br> 276<br> 307<br> 53°
    14·1 answer
  • 1) Write (5y)&lt;3 without exponents.​
    14·1 answer
  • Which of the following numbers round to 530 if we're rounding to the nearest ten?
    11·1 answer
  • What is the vertex form of the graph of y = -4(x + 3)^2+2
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!