1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
3 years ago
9

A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 3.00 m/s, and

her takeoff point is 1.40 m above the pool.
(a) How long are her feet in the air?
s
(b) What is her highest point above the board?
m
(c) What is her velocity when her feet hit the water?
m/s
Physics
1 answer:
vladimir1956 [14]3 years ago
5 0

Answer:

a) t= 0.92 s

b) h = 0.46 m

c) v = -6.04 m/s

Explanation:

A)

  • In order to find the total time that the feet are in the air, we must add two times:
  • 1) time needed to reach to the maximum height (t₁)
  • 2) time from when starts to fall from the maximum height until her feet hit the water (t₂)
  • In order to get t₁, we need to take into account that at her highest point, the vertical speed will be zero.
  • Taking for granted the value for the acceleration due to gravity,
  • g = -9.8 m/s2, we can apply the definition of acceleration, and   replacing by the givens, we can find t₁ as follows:

       t_{1} = \frac{v_{o}}{g} = \frac{3.0m/s}{9.8m/s2} = 0.3 s (1)

  • In order to find t₂, we need to find first the highest point above the board, which is indeed what is asked for in b).
  • We can use the following kinematic equation, taking into account that at the highest point, the final velocity vf will be zero.
  • The equation can be written as follows:

        v_{f} ^{2} - v_{o} ^{2} = 2*g*\Delta h  (2)

  • Replacing by the givens, and solving for Δh, we get:

       \Delta h = \frac{v_{o}^{2}}{2*g} = \frac{(3.0m/s)^{2} }{2*9.8m/s2} = 0.46 m (3)

  • The total height over the water will be just the sum of the takeoff point (1.40 m over the water) and the value we found in (3):
  • H = 1.40 m + 0.46 m = 1.86 m
  • Now, we can use the equation that relates the vertical displacement with the time, remembering that v₀=0, as follows:

       H = \frac{1}{2}*g*t^{2}  (4)

  • Replacing by the givens and the value found for H in (4), and solving for t, we get the value of t₂, as follows:

       t_{2} = \sqrt{\frac{2*H}{g} } = \sqrt{\frac{2*1.86m}{9.8m/s2} } = 0.62 s (5)

  • The total time will the sum of t₁ and t₂:
  • t = 0.3 s + 0.62 s = 0.92 s (6)

B)

  • As we have just found, the highest point above the board was at 0.46m above the takeoff point, so the highest point above the board is just 0.46 m.

C)

  • In order to find the velocity when her feet hit the water, we can use the same equation (2), taking into account that v₀=0, and Δh = H= -1.86m.
  • Solving (2) for vf, we get:

        v_{f} = - \sqrt{2*g*H} = -\sqrt{2*9.8m/s2*1.86m} = -6.04 m/s (7)

You might be interested in
You place a 3.0-m-long board symmetrically across a 0.5-m-wide chair to seat three physics students at a party at your house. If
Stells [14]

Answer:

Komila should sit 0.33m from the middle of the board towards tahreen.

Explanation:

We are told to treat each student as point-like objects. So i have attached a rigid body diagram to depict this.

From the diagram,

F_d is force exerted by dan

F_t is force exerted by tahreen

F_k is force exerted by komila

F_b is force of board at the mid point.

x1 is distance of dan from the centre of the chair

x2 is distance of komila from the centre of the chair

x3 is distance of tahreen from komila

We are given;

Mass of Dan;m_d = 62 kg

Mass of tahreen;m_t = 50 kg

Mass of komila;m_k = 54 kg

Now, taking moments about the centre of the chair, we have;

(F_d*x1) - (F_k*x2) - (F_t(x2 + x3)) = 0

Now,F_d = m_d*g ; F_t = m_t*g ; F_k = m_k*g

We are told that the board is 3m long. So, if we assume that the fulcrum position of the chair coincides with the midpoint of boards length, we'll have;

x1 = (x2 + x3) = 1.5

Thus, we now have;

(F_d*1.5) - (F_k*x2) - (F_t*1.5) = 0

F_d = m_d*g = 62 * 9.8 = 607.6 N

F_t = m_t * g = 50 x 9.8 = 490 N

F_k = m_k * g = 54 x 9.8 = 529.2 N

So plugging in these values, we have;

(607.6 * 1.5) - (529.2 * x2) - (490 * 1.5) = 0

911.4 - 735 = 529.2 x2

529.2 x2 = 176.4

x2 = 176.4/529.2

x2 = 0.33m

Komila should sit 0.24m from the middle of the board towards tahreen

7 0
3 years ago
The Earth's Radius is 6.3710x106 m and mass is 5.9742x1024 kg. What is the acceleration due to gravity at Mount Everest (elevati
Shalnov [3]

Answer is

9.773m/s^2

-----------------------------------------------------------------------------

Given,

h=8848m

The value of sea level is 9.08m/s^2. So, Let g′ be the acceleration due to the gravity on Mount Everest.

g′=g(1 − 2h/h)

=9.8(1 - 6400000/17696)

=9.8(1 − 0.00276)

9.8×0.99724

=9.773m/s^2

Thus, the acceleration due to gravity on the top of Mount Everest is =9.773m/s^2

-----------------------------------------------------------------------

hope this helps :)

3 0
3 years ago
Two speakers placed 0.94 m apart produce pure tones in sync with each other at a frequency of 1630 Hz. A microphone can be moved
Alina [70]

Answer:

a. approximately 1.1\; \rm m (first minimum.)

b. approximately 2.2\; \rm m (first maximum.)

c. approximately 3.4\; \rm m (second minimum.)

d. approximately 4.7\; \rm m (second maximum.)

Explanation:

Let d represent the separation between the two speakers (the two "slits" based on the assumptions.)

Let \theta represent the angle between:

  • the line joining the microphone and the center of the two speakers, and
  • the line that goes through the center of the two speakers that is also normal to the line joining the two speakers.

The distance between the microphone and point P_0 would thus be 9.4\, \tan(\theta) meters.

Based on the assumptions and the equation from Young's double-slit experiment:

\displaystyle \sin(\theta) = \frac{\text{path difference}}{d}.

Hence:

\displaystyle \theta = \arcsin \left(\frac{\text{path difference}}{d}\right).

The "path difference" in these two equations refers to the difference between the distances between the microphone and each of the two speakers. Let \lambda denote the wavelength of this wave.

\displaystyle \begin{array}{c|c} & \text{Path difference} \\ \cline{1-2}\text{First Minimum} & \lambda / 2 \\ \cline{1-2} \text{First Maximum} & \lambda \\\cline{1-2} \text{Second Minimum} & 3\,\lambda / 2 \\ \cline{1-2} \text{Second Maximum} & 2\, \lambda\end{array}.

Calculate the wavelength of this wave based on its frequency and its velocity:

\displaystyle \lambda = \frac{v}{f} \approx 0.211\; \rm m.

Calculate \theta for each of these path differences:

\displaystyle \begin{array}{c|c|c} & \text{Path difference} & \text{approximate of $\theta$} \\ \cline{1-3}\text{First Minimum} & \lambda / 2 & 0.112 \\ \cline{1-3} \text{First Maximum} & \lambda & 0.226\\\cline{1-3} \text{Second Minimum} & 3\,\lambda / 2 & 0.343\\ \cline{1-3} \text{Second Maximum} & 2\, \lambda & 0.466\end{array}.

In each of these case, the distance between the microphone and P_0 would be 9.4\, \tan(\theta). Therefore:

  • At the first minimum, the distance from P_0 is approximately 1.1\; \rm m.
  • At the first maximum, the distance from P_0 is approximately 2.2\; \rm m.
  • At the second minimum, the distance from P_0 is approximately 3.4\; \rm m.
  • At the second maximum, the distance from P_0 is approximately 4.7\;\rm m.
6 0
4 years ago
A 1.25 x 10-4 C charge is moving5200 m/s at 37.0° to a magnetic fieldof 8.49 x 10-4 T. What is the magneticforce on the charge?
juin [17]

0.0003321 Newtons

Explanation

We are given the charge, its velocity, and the magnetic field strength and direction. We can thus use the equation to find the force

\begin{gathered} F=qvBsinθ \\ where\text{ F is the magnetic force} \\ q\text{ is the charge} \\ v\text{ is the velocity of the charge} \\ Bis\text{ the magnetic field} \\ \theta\text{ is the angle} \end{gathered}

so

Step 1

Let

\begin{gathered} q=1.25*10^{-4\text{ }}C \\ v=5200\frac{m}{s} \\ \theta=37\text{ \degree} \\ B=8.49*10^{-4}T \end{gathered}

now, replace

\begin{gathered} F=qvBs\imaginaryI n\theta \\ F=1.25*10^{-4}\text{ C*5200 }\frac{m}{s}*8.49*10^{-4}Tsin(37) \\ F=0.0003321\text{ Newtons} \\  \end{gathered}

so, the answer is

0.0003321 Newtons

I hope this helps you

7 0
1 year ago
A student goes the beach. She thinks that at night the sand will get cooler faster than the ?water. Which describes the student'
neonofarm [45]

Answer:

BB

Explanation:

5 0
3 years ago
Other questions:
  • A parallel plate capacitor contains a positively charged plate on the left, and a negatively charged plate on the right. An elec
    5·1 answer
  • What is the strength of the electric field between two charged parallel plates that are 0.25 cm apart and have a potential of 9.
    7·1 answer
  • The speed of a 4-kg ball with a momentum of 12 kg m/s is
    13·1 answer
  • When you throw a ball the work you do to accelerate it equals the kinetic energy the ball gains?
    8·1 answer
  • the mass of a brick is 4 kg, find the mass of water displaced by it when completely immersed in water.​
    5·1 answer
  • A siren emitting a sound of frequency 1003 Hz moves away from you toward the face of a cliff at a speed of 12.0 m/s. Take the sp
    14·1 answer
  • If the child pulls with a force of 20 N for 12.0 m , and the handle of the wagon is inclined at an angle of 25 ∘ above the horiz
    14·1 answer
  • The _______ the object, the _______ effect a force will have on its motion.
    15·1 answer
  • Why is a cell phone more likely to break when dropped from a higher height than a lower one?
    11·1 answer
  • Contrast erosion and deposition
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!