Strength of induced current increased when strength of magnetic field increases. It will also increase when the number of turns are increased or if the speed of conductor increases
Answer:
Yes it is possible
Explanation:
When two equal magnitude forces are acting on the rod in opposite direction
Then the net force on the system is always zero in that case
so we will have

now for the system net torque due to these forces is given by

here we know that
= distance of the forces from reference about which torque is measured
so here we can say that net force is zero on the system while torque is not zero
in all such case object will rotate about a fixed position with change angular speed
The answer to the question is A
<h2>Answer: True
</h2>
The <u>Doppler effect</u> refers to the change in a wave perceived frequency when the emitter of the waves, and the receiver (or observer in the case of light) move relative to each other.
In other words, it is the variation of the frequency of a wave due to the relative movement of the source of the wave with respect to its receiver.
It should be noted that this effect bears its name in honor of the Austrian physicist <u>Christian Andreas Doppler</u>, who in 1842 proposed the existence of this effect for the case of light in the stars. Another important aspect is that the effect occurs in all waves (including light and sound). However, it is more noticeable to humans with sound waves.
Answer:
320 N/m
Explanation:
From Hooke's law, we deduce that
F=kx where F is applied force, k is spring constant and x is extension or compression of spring
Making k the subject of formula then

Conversion
1m equals to 100cm
Xm equals 25 cm
25/100=0.25 m
Substituting 80 N for F and 0.25m for x then

Therefore, the spring constant is equal to 320 N/m