Answer:
= 3.36 mm
Explanation:
From Ohm's law,
(Voltage = Current * Resistance)

The geometric definition of resistance is

where
is the resistivity of the material,
and
are the length and cross-sectional area, respectively.


Since the wire is assumed to have a circular cross-section, its area is given by
where
is the diameter.


Resistivity of copper =
. With these and other given values,




<u>Explanation:</u>
Velocity of B₁ = 4.3m/s
Velocity of B₂ = -4.3m/s
For perfectly elastic collision:, momentum is conserved

where,
m₁ = mass of Ball 1
m₂ = mass of Ball 2
v₁ = initial velocity of Ball 1
v₂ = initial velocity of ball 2
v'₁ = final velocity of ball 1
v'₂ = final velocity of ball 2
The final velocity of the balls after head on elastic collision would be

Substituting the velocities in the equation

If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.
You can. But the gravity on the moon is 1/6th the gravity on Earth. This means 300 lbs man would only weigh 50 lbs.
Temperature is just a measure of how HOT or COLD a substance is, which can be easily defined by a magnitude using a numerical value say “300 K” or “27°C”. Hence we can say it is a scalar quantity.
But the energy which transfer by virtue of a temperature difference is a vector quantity, as it has both magnitude and direction of motion (from High temperature to low temperature region).
Answer:
2 kg
Explanation:
Acceleration = 5 m/s^2
Force = 10 N
Force = mass * acceleration
mass = force / acceleration
mass = 10 / 5
mass = 2 kg