Answer:

Step-by-step explanation:
<u>Fraction Models</u>
Given a number N, to model the process of sharing N into M equal parts we use the division N/M or the fraction

There are N=5 cakes to be shared between M=6 people, thus the fraction that represents or models the situation is

Yes, ode45 can be used for higher-order differential equations. You need to convert the higher order equation to a system of first-order equations, then use ode45 on that system.
For example, if you have
... u'' + a·u' + b·u = f
you can define u1 = u, u2 = u' and now you have the system
... (u2)' + a·u2 + b·u1 = f
... (u1)' = u2
Rearranging, this is
... (u1)' = u2
... (u2)' = f - a·u2 - b·u1
ode45 is used to solve each of these. Now, you have a vector (u1, u2) instead of a scalar variable (u). A web search regarding using ode45 on higher-order differential equations can provide additional illumination, including specific examples.
Answer:
8
Step-by-step explanation:
Two different approaches:
<u>Method 1</u>
Apply radical rule √(ab) = √a√b to simplify the radicals:
√98 = √(49 x 2) = √49√2 = 7√2
√50 = √(25 x 2) = √25√2 = 5√2
Therefore, (√98 - √50)² = (7√2 - 5√2)²
= (2√2)²
= 4 x 2
= 8
<u>Method 2</u>
Use the perfect square formula: (a - b)² = a² - 2ab + b²
where a = √98 and b = √50
So (√98 - √50)² = (√98)² - 2√98√50 + (√50)²
= 98 - 2√98√50 + 50
= 148 - 2√98√50
Apply radical rule √(ab) = √a√b to simplify radicals:
√98 = √(49 x 2) = √49√2 = 7√2
√50 = √(25 x 2) = √25√2 = 5√2
Therefore, 148 - 2√98√50 = 148 - (2 × 7√2 × 5√2)
= 148 - 140
= 8
Answer:
y=-|x+1|+1
Step-by-step explanation:
It's an absolute value function vertically flipped and shifted 1 unit to the left, 1 unit to the the top.
Answer:
Odd integers
Step-by-step explanation:
The range is odd integers, if you add 1 to any even integer it becomes an odd integer. 2+1=3; 10+1=11