1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kramer
2 years ago
14

Change this equation, in standard form, to slope-intercept form: 2x + 3y = 18

Mathematics
2 answers:
Mandarinka [93]2 years ago
6 0

Answer:

y = -2/3 + 18

Step-by-step explanation:

2x + 3y = 18       -----    here is the equation...

-2x          - 2x     -----    bring the 2x to the other side

3y = -2x + 18      -----    now you have to divide everything by 3 to get y by itself

y = -2/3 + 18       -----    Done!

Rainbow [258]2 years ago
3 0

Answer:

y= -2/3x + 6

Step-by-step explanation:

Subtract 2 from both sides of the Equation:

3y=18-2x

Divide each term by 3 and simplify:

y= - 2x/3 +6

Rewrite into slop-Intercept form;

y=2/3x+6

You might be interested in
What is the slope of this line?<br><br> Enter your answer in the box.<br><br> ____.
kati45 [8]
A line parallel to x-axis has 0 slope.
3 0
3 years ago
Read 2 more answers
What is 1.40 turned into a fraction
Aleks [24]
1.40 as a fraction is a 1 40/100 simplify it. 1 20/50. 1 2/5
HOPE I HELPED!!!
7 0
3 years ago
Read 2 more answers
If the volume of a box is 2x3 + 4x2 − 30xwhich of the dimensions are possible with the given x-value?
Kipish [7]

The possible value of x = 4, dimensions 8 by 9 by 1 (option D), if the volume of a box is 2 x^{3} + 4 x^{2} -30x.

Step-by-step explanation:

The given is,

                        2 x^{3} + 4 x^{2} -30x................................(1)

Step:1

    Check for option A,

             x = 1, dimensions 8 by 9 by 1  

            From the equation (1),

                      Volume = 2 (1^{3}) + 4 (1^{2} )-30(1)

                                    =2+4-30 = -24...................(2)

            From the dimensions,

                      Volume = ( 8 × 9 × 1 )

                                     = 72............................................(3)

            From equation (2) and (3)

                                -24 ≠ 72

            So, X=1; dimensions 8 by 9 by 1 is not possible.

   Check for option B,

             x = 1, dimensions 2 by 5 by 3

            From the equation (1),

                      Volume = 2 (1^{3}) + 4 (1^{2} )-30(1)

                                    =2+4-30 = -24...................(4)

            From the dimensions,

                      Volume = ( 2 × 5 × 3 )

                                     = 30.........................................(5)

            From equation (4) and (5)

                                -24 ≠ 30

            So, X=1; dimensions 2 by 5 by 3 is not possible.

   Check for option C,

            x = 4, dimensions 2 by 5 by 3

            From the equation (1),

                      Volume = 2 (4^{3}) + 4 (4^{2} )-30(4)

                                    =2(64)+4(16)-30(4)

                                    = 128+64-120

                                    = 72.............................................(6)

            From the dimensions,

                      Volume = ( 2 × 5 × 3 )

                                     = 30............................................(7)

            From equation (6) and (7)

                               72 ≠ 30

            So, X=4; dimensions 2 by 5 by 3 is not possible.

    Check for option C,

            x = 4, dimensions 8 by 9 by 1

            From the equation (1),

                      Volume = 2 (4^{3}) + 4 (4^{2} )-30(4)

                                    =2(64)+4(16)-30(4)

                                    = 128+64-120

                                    = 72............................................(8)

            From the dimensions,

                      Volume = ( 8 × 9 × 1 )

                                    = 72............................................(9)

            From equation (8) and (9)

                               72 = 72

            So, X=4; dimensions 8 by 9 by 3 is possible.

Result:

           The possible value of x = 4, dimensions 8 by 9 by 1 (option D), if the volume of a box is 2 x^{3} + 4 x^{2} -30x.

         

4 0
3 years ago
16+ y =24<br> What is the value of y?
andrezito [222]

\rule{300}{1}\\\dashrightarrow\large\blue\textsf{\textbf{\underline{Given question:-}}}

    <em>16+y=24, What is y?</em>

<em />

<em />\dashrightarrow\large\blue\textsf{\textbf{\underline{Answer and how to solve:-}}}

When solving an equation, we need to make sure that all variables are on one side and all numbers are on the other side.

Since we have numbers on both sides, we need to move all of them to one side:-

\tt{16+y=24}

\tt{y=24-16}

\tt{y=8}

<h3>Good luck with your studies.</h3>

\rule{300}{1}

6 0
2 years ago
12s=72
Alenkasestr [34]

Answer:

12s=72

s=72/12

s=6

I hope It will help you

8 0
3 years ago
Other questions:
  • If the complex number x = 3 + bị and x/2 = 13, which is a possible value of b?
    9·1 answer
  • A manufacturer of banana chips would like to know whether its bag filling machine works correctly at the 430 gram setting. It is
    10·1 answer
  • Help me please I really needa turn this in by tmr
    8·1 answer
  • The ratio of money in Terry's bank account to Faye's bank account was 3:7.
    5·1 answer
  • An 8 foot long piece of 2 by 4 wood is used to prop up a fence if the 2 by 4 makes 30 degree angle with the ground how high abov
    5·1 answer
  • 3. One morning, the elevator in Emilio's apartment building was out of order. When he walked down the stairs from
    12·1 answer
  • Fill in the blanks.<br> 2 yd = ?ft<br> 84 in = ?ft
    12·2 answers
  • Four more than seven times a number is 12.” Write an equation that represents the statement. Then solve.
    10·1 answer
  • I NEED HELP IMMEDIATELY
    7·1 answer
  • Form a quadratic equation with roots (1+√3) and (1-√3)​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!