You need to show me the model, so I can answer the question.
Answer:
the equation?
Step-by-step explanation:
01110101010011101101000111011101010101010101010110
Answer:
P(t) = 12e^1.3863k
Step-by-step explanation:
The general exponential equation is represented as;
P(t) = P0e^kt
P(t) is the population of the mice after t years
k is the constant
P0 is the initial population of the mice
t is the time in months
If after one month there are 48 population, then;
P(1) = P0e^k(1)
48 = P0e^k ...... 1
Also if after 2 months there are "192" mice, then;
192 = P0e^2k.... 2
Divide equation 2 by 1;
192/48 = P0e^2k/P0e^k
4 = e^2k-k
4 = e^k
Apply ln to both sides
ln4 = lne^k
k = ln4
k = 1.3863
Substitute e^k into equation 1 to get P0
From 1, 48 = P0e^k
48 = 4P0
P0 = 48/4
P0 = 12
Get the required equation by substituting k = 1.3863 and P0 = 12 into equation 1, we have;
P(t) = 12e^1.3863k
This gives the equation representing the scenario
Average is the...basic number in the set. So, the one that is more relatable.
Based on that knowledge, just use your data that have or chose and find the most common one.
Hope this helps!
In PEMDAS you do parentheses first
(32-20) equals 12
Now you divide
12/4 equals 3
The answer is 3