Firstly, we will draw figure
now, we will draw a altitude from B to DC that divides trapezium into rectangle and right triangle
because of opposite sides of rectangle ABMD are congruent
so,
DM=AB=9
CM=CD-DM
CM=18-9
CM=9
now, we can find BM by using Pythagoras theorem

now, we can plug values
we get


now, we can find area of trapezium

now, we can plug values
and we get


so, area of of the trapezoid is
..........Answer
Answer: C
Step-by-step explanation:
The x times 4 equals the y in each column.
Answer:
The Answer is gonna be D. 2
This is the right Answer:3
I hope you are having a great day ❤️❤️❤️
62.5% of 56 is 35
Divide 35 and 56:

Convert the decimal to a percentage:
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> )
<em>z</em> = 3<em>i</em> / (-1 - <em>i</em> ) × (-1 + <em>i</em> ) / (-1 + <em>i</em> )
<em>z</em> = (3<em>i</em> × (-1 + <em>i</em> )) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3<em>i</em> + 3<em>i</em> ²) / ((-1)² - <em>i</em> ²)
<em>z</em> = (-3 - 3<em>i </em>) / (1 - (-1))
<em>z</em> = (-3 - 3<em>i </em>) / 2
Note that this number lies in the third quadrant of the complex plane, where both Re(<em>z</em>) and Im(<em>z</em>) are negative. But arctan only returns angles between -<em>π</em>/2 and <em>π</em>/2. So we have
arg(<em>z</em>) = arctan((-3/2)/(-3/2)) - <em>π</em>
arg(<em>z</em>) = arctan(1) - <em>π</em>
arg(<em>z</em>) = <em>π</em>/4 - <em>π</em>
arg(<em>z</em>) = -3<em>π</em>/4
where I'm taking arg(<em>z</em>) to have a range of -<em>π</em> < arg(<em>z</em>) ≤ <em>π</em>.