<span>A)The author builds events slowly to create tension.</span>
Answer:
Step-by-step explanation:
We are given that

Function f decreases from quadrant 2 to quadrant 1 and approaches y=0
It cut the y- axis at (0,6) and passing through the point (1,2).
Function g(x) approaches y=0 in quadrant 2 and increases into quadrant 1.
It passing through the point (-1,2) and cut the y-axis at point (0,6).
Reflection across y- axis:
Rule of transformation is given by

Using the rule then we get

By using

Substitute x=-1

Substitute x=0

Therefore,
is true.
Answer:
a. v(t)= -6.78
+ 16.33 b. 16.33 m/s
Step-by-step explanation:
The differential equation for the motion is given by mv' = mg - γv. We re-write as mv' + γv = mg ⇒ v' + γv/m = g. ⇒ v' + kv = g. where k = γ/m.Since this is a linear first order differential equation, We find the integrating factor μ(t)=
=
. We now multiply both sides of the equation by the integrating factor.
μv' + μkv = μg ⇒
v' + k
v = g
⇒ [v
]' = g
. Integrating, we have
∫ [v
]' = ∫g
v
= 
+ c
v(t)=
+ c
.
From our initial conditions, v(0) = 9.55 m/s, t = 0 , g = 9.8 m/s², γ = 9 kg/s , m = 15 kg. k = y/m. Substituting these values, we have
9.55 = 9.8 × 15/9 + c
= 16.33 + c
c = 9.55 -16.33 = -6.78.
So, v(t)= 16.33 - 6.78
. m/s = - 6.78
+ 16.33 m/s
b. Velocity of object at time t = 0.5
At t = 0.5, v = - 6.78
+ 16.33 m/s = 16.328 m/s ≅ 16.33 m/s
Responda:
$ 980
Explicação passo a passo:
Dado que:
Salário mensal = $ 1400
Data de emprego = 10 de janeiro
Usando o sistema de mês de 30 dias:
Taxa diária =. $ 1400/30 = $ 46.66666
Dias não trabalhados = janeiro - 9 de janeiro = 9 dias
Subtraia o salário de 9 dias do total:
Salário total - (9 * taxa diária)
$ 1400 - (9 * $ 46,66666)
$ 1400 - $ 420
= $ 980
Portanto, o saldo do salário é de $ 980
Answer:
We should reject H0
At the 5% significance level, there is sufficient evidence to conclude that the die is not fair.
Step-by-step explanation:
Null hypothesis is a statement that is to be tested against the alternative hypothesis and then decision is taken whether to accept or reject the null hypothesis. The critical value is 15.091 and test statistic is 11.070. The null hypothesis is rejected or accepted on the basis of level of significance. When the p-value Test statistics is greater than level of significance we fail to reject the null hypothesis and null hypothesis is then accepted. In the given case p-value is less than critical value then we should reject the null hypothesis.