Answer:
Distance from the airport = 894.43 km
Step-by-step explanation:
Displacement and Velocity
The velocity of an object assumed as constant in time can be computed as
![\displaystyle \vec{v}=\frac{\vec{x}}{t}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv%7D%3D%5Cfrac%7B%5Cvec%7Bx%7D%7D%7Bt%7D)
Where
is the displacement. Both the velocity and displacement are vectors. The displacement can be computed from the above relation as
![\displaystyle \vec{x}=\vec{v}.t](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx%7D%3D%5Cvec%7Bv%7D.t)
The plane goes at 400 Km/h on a course of 120° for 2 hours. We can compute the components of the velocity as
![\displaystyle \vec{v_1}=](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv_1%7D%3D%3C400%5C%20cos%5C%20120%5Eo%2C400%5C%20sin%5C%20120%5Eo%3E)
![\displaystyle \vec{v_1}=\ km/h](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv_1%7D%3D%3C-200%2C%5C%20200%5Csqrt%7B3%7D%3E%5C%20km%2Fh)
The displacement of the plane in 2 hours is
![\displaystyle \vec{x_1}=\vec{v_1}.t_1=.(2)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx_1%7D%3D%5Cvec%7Bv_1%7D.t_1%3D%3C-200%2C200%5Csqrt%7B3%7D%3E.%282%29)
![\displaystyle \vec{x_1}=km](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx_1%7D%3D%3C-400%2C400%5Csqrt%7B3%7D%3Ekm)
Now the plane keeps the same speed but now its course is 210° for 1 hour. The components of the velocity are
![\displaystyle \vec{v_2}=](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv_2%7D%3D%3C400%5C%20cos210%5Eo%2C400%5C%20sin%20210%5Eo%3E)
![\displaystyle \vec{v_2}=km/h](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bv_2%7D%3D%3C-200%5Csqrt%7B3%7D%2C-200%3Ekm%2Fh)
The displacement in 1 hour is
![\displaystyle \vec{x_2}=\vec{v_2}.t_2=.(1)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx_2%7D%3D%5Cvec%7Bv_2%7D.t_2%3D%3C-200%5Csqrt%7B3%7D%2C-200%3E.%281%29)
![\displaystyle \vec{x_2}=km](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx_2%7D%3D%3C-200%5Csqrt%7B3%7D%2C-200%3Ekm)
The total displacement is the vector sum of both
![\displaystyle \vec{x_t}=\vec{x_1}+\vec{x_2}=+](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx_t%7D%3D%5Cvec%7Bx_1%7D%2B%5Cvec%7Bx_2%7D%3D%3C-400%2C400%5Csqrt%7B3%7D%3E%2B%3C-200%5Csqrt%7B3%7D%2C-200%3E)
![\displaystyle \vec{x_t}=km](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx_t%7D%3D%3C-400-200%5Csqrt%7B3%7D%2C400%5Csqrt%7B3%7D-200%3Ekm)
![\displaystyle \vec{x_t}=](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cvec%7Bx_t%7D%3D%3C-746.41%5C%20km%2C492.82%5C%20km%3E)
The distance from the airport is the module of the displacement:
![\displaystyle |\vec{x_t}|=\sqrt{(-746.41)^2+492.82^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%7C%5Cvec%7Bx_t%7D%7C%3D%5Csqrt%7B%28-746.41%29%5E2%2B492.82%5E2%7D)
![\displaystyle |\vec{x_t}|=894.43\ km](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%7C%5Cvec%7Bx_t%7D%7C%3D894.43%5C%20km)