Answer:
Neither linear nor exponential
Step-by-step explanation:
To check for a linear relationship. Find slope.
slope= (-1 - (-2)) / ( 5 - 2) = 1/3
check other points
slope = (1 - (-1) )/ (8 - 5) = 2/3
check more
slope = (4 - 1) / (11 - 8) = 3/ 3 = 1
Nope.
try assuming an exponential:
y = c * (a^x)
-2 = c* (a^2); -2/c = a^2
-1 = c *(a ^5); -1/c = a^5
1 = c * (a^8), 1/c = a^8
(-2/c)^4 = a^8 = 1/c
16/(c^4) = 1/c
c^3 = 16, then a = root (-2/ cube-root(16) )
The change from negative to postive would not work for y = c(a^x)
so...
assume y = a^x + k
-2 = a^2 + k
-1 = a^5 + k
... I would say neither..
You cant because there are 2 different variables
hope this helps, have a great day
Answer:
We have to put the data for purchased item in a frequency table.
Step-by-step explanation:
The diagram is attached below.
Firstly we have to see that how many customers fall under range
.
Then
.
Then
.
Finally
.
If we go through the items purchased by customers we can see that item ranges from
have
customers.
Item purchased range from
have
customers.
Item purchased range from
have
customers.
Item purchased range from
have
customers.
Total number of customers = 
As we have total
number of customers and they have varied quantity of items purchased.
H(t) = -16t² + 60t + 95
g(t) = 20 + 38.7t
h(1) = -16(1²) + 60(1) + 95 = -16 + 60 + 95 = -16 + 155 = 139
h(2) = -16(2²) + 60(2) + 95 = -16(4) + 120 + 95 = -64 + 215 = 151
h(3) = -16(3²) + 60(3) + 95 = -16(9) + 180 + 95 = -144 + 275 = 131
h(4) = -16(4²) + 60(4) + 95 = -16(16) + 240 + 95 = -256 + 335 = 79
g(1) = 20 + 38.7(1) = 20 + 38.7 = 58.7
g(2) = 20 + 38.7(2) = 20 + 77.4 = 97.4
g(3) = 20 + 38.7(3) = 20 + 116.1 = 136.1
g(4) = 20 + 38.7(4) = 20 + 154.8 = 174.8
Between 2 and 3 seconds.
The range of the 1st object is 151 to 131.
The range of the 2nd object is 97.4 to 136.1
h(t) = g(t) ⇒ 131 = 131
<span>It means that the point where the 2 objects are equal is the point where the 1st object is falling down while the 2nd object is still going up. </span>
(f-g) (x) means to subtract g(x) from f(x)
F(x) = 2x^2 +3
g(x) = x^2
This becomes:
2x^2 + 3 - x^2 = x^2 +3