240 = 2 × 120
120 = 2 × 60
60 = 2 × 30
30 = 2 × 15
15 = 3 × 5
The 2, 2, 2, 2, 3 and 5 are all the prime factors of 240. So, 2^4 × 3 × 5
1500 = 3 × 500
500 = 5 × 100
100 = 5 × 20
20= 5 × 4
4 = 2 × 2
The 3, 5, 5, 5, 2 and 2 are all the prime factors of 1500. So, 2² + 3 + 5³
In quadratic equations,
a + b = -B
ab = C
where a and b are the roots, B is the second term, and C is the constant.
Substituting,
a + b = -12
ab = 35
The values of a and b from the equation is -7 and -5. Thus, the lesser root is -7.
Answer:
y = (5/9)x + 2
Step-by-step explanation:
Slope intercept form is
y = mx + b then plug in the values
y = (5/9)x + 2
<span>The vertex of the parabola is the highest or lowest point of the graph.
</span><span>y=-4x^2+8x-12 = -4 (x^2 -2x +3)
Lets work with this now: </span>x^2 -2x +3
x^2 -2x +3 -> what is the closeset perfect square?
x^2 -2x +1 = (x-1)^2
So
x^2 -2x +3 = (x-1)^2 +2
Replacing to original
y=-4x^2+8x-12 = -4 (x^2 -2x +3) = -4 ((x-1)^2 +2) = -4 (x-1)^2 - 8
The min or max point is where the squared part = 0
So when x=1 , y= -4*0-8=-8
This will be the max of the parabola as there is - for the highest factor (-4x^2)
The max: x=1, y= -8
X^3 + 5^3
(x+5)x(x^2-X x 5+5^2)
(x+5)x(x^2 -5x+5^2)
(x+5)x(x^2 -5x+25)
(x+5) x (x^2 -5x+25)