1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
3 years ago
9

Figure ABCD is a kite. The area of ABCD is 48 square units. The length of line segment BD is 8 units. What is the length of AC?

Mathematics
2 answers:
Fed [463]3 years ago
8 0

A = d1 x d2 / 2

d1 = BD = 8 units

48 = 8 x AC / 2

48 x 2 = 8 AC

96 = 8 AC

AC = 96 : 8 = 12

Answer: D ) 12 units

bulgar [2K]3 years ago
5 0

The correct answer is:

D. 12 units

The length of AC is 12 units.

|Huntrw6|

You might be interested in
MATHHHHHH I NEED HELP PLEASE!!!!!
Olin [163]

Answer:

so at (0,20) she spent all the money on (20) orange juice and 0 coffee

then at (15,0) she spent all the money on (15) coffee and 0 orange juice

Step-by-step explanation:

3 0
3 years ago
NEED HELP ASAP<br><br>3(x+2)=18​
elena-14-01-66 [18.8K]

Answer:

x=4

Step-by-step explanation:

3x + 6 = 18

3x = 18 - 6 = 12

x = 4

4 0
2 years ago
Read 2 more answers
Prove that: (b²-c²/a)CosA+(c²-a²/b)CosB+(a²-b²/c)CosC = 0​
IRISSAK [1]

<u>Prove that:</u>

\:\:\sf\:\:\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C=0

<u>Proof: </u>

We know that, by Law of Cosines,

  • \sf \cos A=\dfrac{b^2+c^2-a^2}{2bc}
  • \sf \cos B=\dfrac{c^2+a^2-b^2}{2ca}
  • \sf \cos C=\dfrac{a^2+b^2-c^2}{2ab}

<u>Taking</u><u> </u><u>LHS</u>

\left(\dfrac{b^2-c^2}{a}\right)\cos A+\left(\dfrac{c^2-a^2}{b}\right)\cos B +\left(\dfrac{a^2-b^2}{c}\right)\cos C

<em>Substituting</em> the value of <em>cos A, cos B and cos C,</em>

\longmapsto\left(\dfrac{b^2-c^2}{a}\right)\left(\dfrac{b^2+c^2-a^2}{2bc}\right)+\left(\dfrac{c^2-a^2}{b}\right)\left(\dfrac{c^2+a^2-b^2}{2ca}\right)+\left(\dfrac{a^2-b^2}{c}\right)\left(\dfrac{a^2+b^2-c^2}{2ab}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2-a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2-b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2-c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^2-c^2)(b^2+c^2)-(b^2-c^2)(a^2)}{2abc}\right)+\left(\dfrac{(c^2-a^2)(c^2+a^2)-(c^2-a^2)(b^2)}{2abc}\right)+\left(\dfrac{(a^2-b^2)(a^2+b^2)-(a^2-b^2)(c^2)}{2abc}\right)

\longmapsto\left(\dfrac{(b^4-c^4)-(a^2b^2-a^2c^2)}{2abc}\right)+\left(\dfrac{(c^4-a^4)-(b^2c^2-a^2b^2)}{2abc}\right)+\left(\dfrac{(a^4-b^4)-(a^2c^2-b^2c^2)}{2abc}\right)

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2}{2abc}+\dfrac{c^4-a^4-b^2c^2+a^2b^2}{2abc}+\dfrac{a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>On combining the fractions,</em>

\longmapsto\dfrac{(b^4-c^4-a^2b^2+a^2c^2)+(c^4-a^4-b^2c^2+a^2b^2)+(a^4-b^4-a^2c^2+b^2c^2)}{2abc}

\longmapsto\dfrac{b^4-c^4-a^2b^2+a^2c^2+c^4-a^4-b^2c^2+a^2b^2+a^4-b^4-a^2c^2+b^2c^2}{2abc}

<em>Regrouping the terms,</em>

\longmapsto\dfrac{(a^4-a^4)+(b^4-b^4)+(c^4-c^4)+(a^2b^2-a^2b^2)+(b^2c^2-b^2c^2)+(a^2c^2-a^2c^2)}{2abc}

\longmapsto\dfrac{(0)+(0)+(0)+(0)+(0)+(0)}{2abc}

\longmapsto\dfrac{0}{2abc}

\longmapsto\bf 0=RHS

LHS = RHS proved.

7 0
2 years ago
Write the prime factorization of 500 using exponents.
vekshin1
2 x 2 x 5 x 5 x 5

2^2 x 5^3
5 0
3 years ago
A company is designing a new cylindrical water bottle. The volume of the bottle will be 205 cm to the square root of 3 cm. The h
Umnica [9.8K]

Answer:

19 cm

Step-by-step explanation:

Given :

Volume, V = 205 to the √3 = 205^√3

Height, h = 8.9

radius, r

Volume of cylinder:

V = πr²h

205 to the square root of 3 10094.275

company is designing a new cylindrical water bottle. The volume of the bottle will be 205 cm to the square root of 3 cm. The height of the water bottle is 8.9 cm. What is the radius of the water​ bottle?

10094.275 = π * r² * 8.9

10094.275 = 3.14 * 8.9 * r²

10094.275 = 27.946r²

r² = 10094.275 / 27.946

r² = 361.20643

r = √361.20643

r = 19 cm

8 0
3 years ago
Other questions:
  • Of the students at Milton middle school , 140 are girls. If 50% of the students are girls, how many total students are there at
    13·1 answer
  • Properties to find the answer of 8x51
    9·1 answer
  • At a pizza Parlour, you can order single, double, triple cheese in the crust. You also have the option to include ham, olives, p
    10·1 answer
  • A number halved and then halved again is equal to 2. What was the original number?
    8·2 answers
  • A production manager randomly sampled production lines at a factory that produces automobiles. She wanted to find out how many p
    15·1 answer
  • If you are dealt 4 cards from a shuffled deck of 52​ cards, find the probability of getting 2 queens and 2 kings.
    15·1 answer
  • PLS HELP NO LINKS AND ILL GIVE BRAINLIEST
    9·2 answers
  • Brainly if correct
    8·2 answers
  • 50 points and Brainliest for answer
    11·2 answers
  • Plz plz plz plz plz help peep
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!