1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cupoosta [38]
3 years ago
10

Inspired by election season, Evan decided to run for class president. He earned 80% of the votes in his class. If he earned 24 v

otes, how many students were in his class? ( with a explanation on how you got the answer)
Mathematics
2 answers:
sesenic [268]3 years ago
7 0

Answer:

It is 30.

Step-by-step explanation:

Alex_Xolod [135]3 years ago
5 0

Answer:

30 students (30 total voters)

Step-by-step explanation:

Let s represent the number of students in the class.  Evan earned 80% of these votes, which came to 24 votes.  Symbolically, we have:

                                                                                                  24 votes

0.80s = 24 votes.  Therefore, s = total number of voters = ---------------- = 30 voters                                                                                              0.8

The total number of students (voters) in his class was 30.

You might be interested in
PLS HELPPPP MEEEE I NEED WORK SHOWN TOO
Elanso [62]

The series of operations for each case are listed below:

  1. GCF / GCF / GCF
  2. GCF / Grouping
  3. Quadratic trinomial
  4. GCF / Quadratic trinomial
  5. Difference of squares
  6. Difference of cubes / Quadratic trinomial
  7. Sum of cubes
  8. GCF / Quadratic trinomial
  9. GCF / Difference of squares

<h3>How to applying factor properties to simplify algebraic expressions</h3>

In algebra, factor properties are commonly used to solve certain forms of polynomials in a quick and efficient way and whose effectiveness is sustained on all definitions and theorems known in real algebra. In this problem, we should explain and show what factor properties are used in each case:

Case 1

5 · x · y³ + 10 · x² · y                                             Given

5 · (x · y³ + 2 · x² · y)                                            GCF

5 · x · (y³ + 2 · x · y)                                              GCF

5 · x · y · (y² + 2 · x)                                              GCF

Case 2

6 · z · x + 9 · x + 14 · z + 21                                   Given

3 · x · (z + 3) + 7 · (z + 3)                                       GCF

(3 · x + 7) · (z + 3)                                                  Grouping

Case 3

a² + 2 · a - 63                                                       Given

(a + 9) · (a - 7)                                                       Quadratic trinomial

Case 4

6 · z² + 5 · z - 4                                                     Given

6 · [z² + (5 / 6) · z - 2 / 3]                                      GCF

6 · (z - 1 / 2) · (z + 4 / 3)                                         Quadratic trinomial

Case 5

81 · m² - 25                                                           Given

(9 · m + 5) · (9 · m - 5)                                           Difference of squares

Case 6

8 · x³ - 27                                                               Given

(2 · x - 3) · (4 · x² + 6 · x + 9)                                  Difference of cubes

4 · (2 · x - 3) · [x² + (3 / 2) · x + 9 / 4]                      Quadratic trinomial

Case 7

27 · b³ + 64 · z³                                                      Given

(3 · b + 4 · z) · (9 · b² - 12 · b · z + 16 · z²)               Sum of cubes

Case 8

2 · w³ - 28 · w² + 80 · w                                         Given

2 · w · (w² - 14 · w + 40)                                          GCF

2 · w · (w - 4) · (w - 10)                                             Quadratic trinomial

Case 9

200 · a⁴ - 18 · b⁶                                                     Given

2 · (100 · a⁴ - 9 · b⁶)                                                GCF

2 · (10 · a² + 3 · b³) · (10 · a² - 3 · b³)                       Difference of squares

To learn more on polynomials: brainly.com/question/17822016

#SPJ1

7 0
1 year ago
Need help will mark brainliest
Tcecarenko [31]
I think it’s going to be 4/16 but I’m not a math major and I suck at math so I’m not sure
5 0
4 years ago
Which equation represents each scenario
Mkey [24]

Answer:

if she question 1 spend $25 out of the $150, then you would do 150 sub 25 to get 125

Kevin has 10 signs. he's adding 5 signs, so divide 10 to 5 to get 2

Harvey has 5 in 1 minute, i would say in 2 minutes he'll have 10

Fran adds $25 to her $150 then she'll get $175.

Step-by-step explanation:

P= Parentheses  

E= Exponent      

M= Multiplication

D= Division

A= Addition

S= Subtraction

If this doesn't help then sorry , hope this helps.

4 0
2 years ago
1. What is the solution to 5 + t = 23 a. T=28 b. T=18 c. T= -18 d. T= -23 2. What is the value of b if -7 + b = -8 a. B=15 c. B=
kramer
The answer to number one is 18 and the answer to number two is -1
3 0
3 years ago
Read 2 more answers
Suppose triangle TIP and triangle TOP are isosceles triangles. Also suppose that TI=5, PI=7, and PO=11. What are all the possibl
taurus [48]
<h3>Two answers: 5, 7</h3>

====================================================

Explanation:

A drawing may be helpful to see what's going on. Check out the diagram below. This is one way of drawing out the two triangles. The locations of the points don't really matter, and neither does the the orientation of how you rotate things. What does matter is we have the right points connected to form the segments mentioned.

----------

For now, focus on triangle TIP only. In order to have this be isosceles, we must make TP = 5 or TP = 7.

If TP = 5, then it's the same length as TI.

If TP = 7, then it's the same length as PI.

In either case, we have exactly two sides the same length (the other side different) which is what it means for a triangle to be isosceles.

----------

Let's consider triangle TOP. For it to be isosceles, we must have two sides the same length. We already locked in TP to be either 5 or 7 in the previous section above. So there's no way that TP could be 11 units long to match up with PO = 11.

If TP = 5, then OT must also be 5 units long so that triangle TOP is isosceles.

If TP = 7, then OT = 7 for similar reasoning.

Either way, TP only has two choices on what it could be.

----------

In short, we basically just write the first two values given to us to get the two triangles to be isosceles. We can't use TP = 11 as it would make triangle TIP to be scalene (all sides are different lengths).

5 0
3 years ago
Other questions:
  • After m minutes, an adult blinks a bout 10m+ 3 times. about how many times does an adult blink in 3 minutes. In two hours.
    8·1 answer
  • In the diagram above, which two red lines are skew?
    12·1 answer
  • If the triangle shown in the diagram is translated 3 units right and 4 units down, what will be the coordinates of S'? S’(1, )
    13·2 answers
  • Daniel borrowed $5000 from the bank for 2 years at 9% simple interest per annum. Calculate how much interest Daniel is charged.
    6·1 answer
  • Unit 1 Review
    12·1 answer
  • Describe triangle ABC in terms of its sides and angles
    13·2 answers
  • Help me out !?!??!?!l
    15·1 answer
  • Use the table to write a linear function that relates y to x.
    15·1 answer
  • 6 1.-(Rus) &gt; (P2Q)<br> 2. ~(Rus) /P&gt;Q<br> 3. PUQ<br> 1,2,<br> 42
    9·1 answer
  • The expression a[b+(c−d)]
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!