1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veseljchak [2.6K]
3 years ago
13

Solve the initial-value problem using the method of undetermined coefficients.

Mathematics
1 answer:
andrey2020 [161]3 years ago
3 0

First check the characteristic solution. The characteristic equation to this DE is

<em>r</em> ² - <em>r</em> = <em>r</em> (<em>r</em> - 1) = 0

with roots <em>r</em> = 0 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁ </em>exp(0<em>x</em>) + <em>C₂</em> exp(1<em>x</em>)

<em>y</em> (char.) = <em>C₁</em> + <em>C₂</em> exp(<em>x</em>)

For the particular solution, we try the <em>ansatz</em>

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) exp(<em>x</em>)

but exp(<em>x</em>) is already accounted for in the second term of <em>y</em> (char.), so we multiply each term here by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> ² + <em>bx</em>) exp(<em>x</em>)

Differentiate this twice and substitute the derivatives into the DE.

<em>y'</em> (part.) = (2<em>ax</em> + <em>b</em>) exp(<em>x</em>) + (<em>ax</em> ² + <em>bx</em>) exp(<em>x</em>)

… = (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

<em>y''</em> (part.) = (2<em>ax</em> + 2<em>a</em> + <em>b</em>) exp(<em>x</em>) + (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

… = (<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) exp(<em>x</em>)

(<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) exp(<em>x</em>) - (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) exp(<em>x</em>)

= <em>x</em> exp(<em>x</em>)

The factor of exp(<em>x</em>) on both sides is never zero, so we can cancel them:

(<em>ax</em> ² + (4<em>a</em> + <em>b</em>)<em>x</em> + 2<em>a</em> + 2<em>b</em>) - (<em>ax</em> ² + (2<em>a</em> + <em>b</em>)<em>x</em> + <em>b</em>) = <em>x</em>

Collect all the terms on the left side to reduce it to

2<em>ax</em> + 2<em>a</em> + <em>b</em> = <em>x</em>

Matching coefficients gives the system

2<em>a</em> = 1

2<em>a</em> + <em>b</em> = 0

and solving this yields

<em>a</em> = 1/2, <em>b</em> = -1

Then the general solution to this DE is

<em>y(x)</em> = <em>C₁</em> + <em>C₂</em> exp(<em>x</em>) + (1/2 <em>x</em> ² - <em>x</em>) exp(<em>x</em>)

For the given initial conditions, we have

<em>y</em> (0) = <em>C₁</em> + <em>C₂</em> = 6

<em>y'</em> (0) = <em>C₂</em> - 1 = 5

and solving for the constants here gives

<em>C₁</em> = 0, <em>C₂</em> = 6

so that the particular solution to the IVP is

<em>y(x)</em> = 6 exp(<em>x</em>) + (1/2 <em>x</em> ² - <em>x</em>) exp(<em>x</em>)

You might be interested in
What is the sum? StartFraction 2 Over x squared EndFraction + StartFraction 4 Over x squared EndFraction StartFraction 6 Over x
777dan777 [17]

Answer:

  StartFraction 6 Over x squared EndFraction

Step-by-step explanation:

Obviously, you prefer words to math symbols, so we'll show the solution using words.

The sum StartFraction 2 Over x squared EndFraction + StartFraction 4 Over x squared EndFraction equals StartFraction 2 plus 4 Over x squared EndFraction equals StartFraction 6 Over x squared EndFraction

__

In appropriate symbols this would be ...

  \dfrac{2}{x^2}+\dfrac{4}{x^2}=\dfrac{2+4}{x^2}=\boxed{\dfrac{6}{x^2}}

3 0
4 years ago
Read 2 more answers
8/9- 2/9 <br> find the difference
lilavasa [31]

Answer:

8/9-2/9

LCM =9     8-2/9 =6/9

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
If a circle has a diameter of 7 inches, what is its area in terms of inches?
irina1246 [14]

Answer:

38.48 inches

Step-by-step explanation:

A = πr²

r = d/2

r = 3.5

A = π(3.5)²

A = 12.25π ≈ 38.48

6 0
3 years ago
CE and FH are parallel lines.<br><br> Which angles are supplementary angles?
nadya68 [22]

Answer:

<CDG and <CDB are supplementary angles.

6 0
3 years ago
Read 2 more answers
8.3 + x= 12.1 <br> I will love you if you can help me!​
-Dominant- [34]

Answer: x= 3.8

Step-by-step explanation:

21.1 - 8.3 = 3.8

x= 3.8

8 0
4 years ago
Read 2 more answers
Other questions:
  • The monthly rents for five apartments advertised in a newspaper were $670, $670, $790, $1550, and $810. Use the mean, median, mo
    12·1 answer
  • Is math related to science?
    9·2 answers
  • Having trbl doing equations.
    15·1 answer
  • 1. The three salespeople for a local advertising firm are Sara, Kenny, and Leila. Sara sold $3350 in ads, Kenny sold $1368, and
    8·2 answers
  • Find the area of the shaded region under the standard distribution curve.
    5·2 answers
  • Workers are loading boxes onto a truck. So far, they have loaded 48 boxes onto the truck.
    8·1 answer
  • Of the 30 students in the sixth period math class, 8 are also in the same fourth period science class. Which can be used to dete
    7·2 answers
  • Which of the following numbers is both a perfect square and a perfect cube?
    12·2 answers
  • What is the only trigonometry function that can have a fraction greater than one and why
    15·1 answer
  • Your cousin's age is the cube of your little sister's age. If your
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!