The measure of angle C (m ∠C) is 40°
<h3>Calculating angles in a triangle </h3>
From the question, we are to determine the measure of angle C (m ∠C)
In any given triangle, the sum of all the angles is 180°
Thus,
In ΔABC, the angles sum up to 180°
That is,
∠A + ∠B + ∠C = 180°
From the given information,
m ∠A = 80°, m ∠B = 60°
Thus,
80° + 60° + m ∠C = 180°
140° + m ∠C = 180°
m ∠C = 180° - 140°
m ∠C = 40°
Hence, the measure of angle C (m ∠C) is 40°
Learn more on Calculating angles in a triangle here: brainly.com/question/17738179
#SPJ1
Answer:
We have the sentence:
"X by the power of 5 times y to the power of 6 over 2 by the power of -2 times x by the power of 0times x by the power of 9"
Let's break it into parts.
"X by the power of 5 times y to the power of 6..."
This can be written as:
x^5*y^6
"... 2 by the power of -2 times x by the power of 0times x by the power of 9"
This can be written as:
2^(-2)*x^(0)*x^(9)
And we have the quotient between the first thing and the second thing, then the equation is:

And any number by the power of 0 is equal to 1, then:
x^0 = 1, then we can rewrite the equation as:

We can keep simplifying this.
We know that:
a^(-n) = (1/a)^(n)
Then:
2^(-2) = (1/2)^2 = 1/4
Then we get:

And we also know that:
a^n/a^m = a^(n - m)
Then:

And we can't simplify this anymore.
La rueda recorre una distancia de 75.420 metros tras 60 vueltas. (Correct choice: A)
<h3>Cuánta distancia recorre una rueda que da 60 vueltas?</h3>
La rueda se desplaza sobre el suelo mediante un tipo de movimiento conocido como rodadura, en la que la rueda experimenta rotación y traslación, cuyo centro instantáneo de rotación es el punto de contacto entre la rueda y el suelo.
Si no existe deslizamiento de la rueda con respecto al suelo, entonces la distancia recorrida tras una revolución de la rueda (s), en metros, es descrita por la siguiente ecuación:
s = 2π · r (1)
Donde r es el radio de la rueda, en metros.
Si tenemos que r = 0.20 m, entonces la distancia recorrida es:
s = 2π · (0.20 m)
s ≈ 1.257 m
Asimismo, la distancia recorrida es directamente proporcional al número de revoluciones de la rueda es y la distancia recorrida tras 60 vueltas es determinada por regla de tres simple:
S = 60 vueltas × (1.257 m / 1 vuelta)
S = 75.420 metros
La rueda recorre una distancia de 75.420 metros tras 60 vueltas.
Para aprender más sobre el movimiento de ruedas: brainly.com/question/2862170
#SPJ1
Answer:
67.02
Step-by-step explanation:
Answer:
A and D
Step-by-step explanation:
Ok so first, if you slice parallel to the base, you can get a square.
If you slice parallel to a face, you get a triangle.