(negative infinity, 2] [2,infinity)
<em>x</em> ^2 + <em>y</em> ^2 = 9 => <em>y</em> = <em>y(x)</em> = ± √(9 - <em>x</em> ^2)
Each cross section would be a square with side length equal to the vertical distance between the upper and lower semicircles defined by <em>y(x)</em>, which is
√(9 - <em>x</em> ^2) - (- √(9 - <em>x</em> ^2)) = 2 √(9 - <em>x</em> ^2)
The area of each square section is the square of this length,
(2 √(9 - <em>x</em> ^2)) = 4 (9 - <em>x</em> ^2) = 36 - 4<em>x</em> ^2
We get the whole solid for -3 ≤ <em>x</em> ≤ 3, so integrating gives a volume of

8m x 125% = 10 meters
or
8m * 25% = 2m
Increasd by: meaning addition thus, add 25% of 8 to 8.
8m + 2m = 10 meters.
I’m not 100% sure but I’m pretty sure that it’s the first one