Interpreting the inequality, it is found that the correct option is given by F.
------------------
- The first equation is of the line.
- The equal sign is present in the inequality, which means that the line is not dashed, which removes option G.
In standard form, the equation of the line is:



Thus it is a decreasing line, which removes options J.
- We are interested in the region on the plane below the line, that is, less than the line, which removes option H.
------------------
- As for the second equation, the normalized equation is:



- Thus, a circle centered at the origin and with radius 2.
- Now, we have to check if the line
, with coefficients
, intersects the circle, of centre 
- First, we find the following distance:

- Considering the coefficients of the line and the center of the circle.

- This distance is less than the radius, thus, the line intersects the circle, which removes option K, and states that the correct option is given by F.
A similar problem is given at brainly.com/question/16505684
Answer:
The correct option is option B. It has one solution, and it's x=-3
Step-by-step explanation:
We have the following system of equations:
5x+7 = 2y (1)
y-9x=23 (2)
Step 1: Solve for 'y' in equation (2):
y-9x = 23
y = 9x + 23
Step 2: Substitute in equation (1):
5x + 7 = 2y
5x + 7 = 2(9x + 23)
5x + 7 = 18x + 46
Step 3: Solve for x:
7 - 46 = 18x - 5x
-39 = 13x
x= -3
So the correct option is option B. It has one solution, and it's x=-3
Answer:
43
Step-by-step explanation: