1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldenfox [79]
3 years ago
6

Show that the line 4y = 5x-10 is perpendicular to the line 5y + 4x = 35 ​

Mathematics
1 answer:
Shkiper50 [21]3 years ago
8 0

Step-by-step explanation:

<h2><em><u>concept :</u></em></h2><h2 /><h2><em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.</u></em></h2><h2 /><h2><em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.</u></em></h2><h2 /><h2><em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:</u></em></h2><h2 /><h2><em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are</u></em></h2><h2 /><h2><em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10</u></em></h2><h2 /><h2><em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10or, y = (5/4)x(5/2).</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>1</em><em>)</em></h2><h2 /><h2><em><u>5y + 4x = 35</u></em></h2><h2 /><h2><em><u>5y + 4x = 35ory = (-4/5)x + 7.</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>2</em><em>)</em></h2><h2 /><h2><em><u>Let m and n be the slope of equations i and ii, respectively.</u></em></h2><h2 /><h2><em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4</u></em></h2><h2 /><h2><em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5</u></em></h2><h2 /><h2><em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1</u></em></h2><h2 /><h2><em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1Hence, the lines are perpendicular.</u></em></h2>
You might be interested in
2x^3-x^2-3x=210<br> the answer is 5 but I want to know why.
mel-nik [20]

Answer:

x=5,\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}

Step-by-step explanation:

1) Move all terms to one side.

2x^{3} -x^{2} -3x-210=0

2) Factor 2{x}^{3}-{x}^{2}-3x-210 using Polynomial Division.

1 -  Factor the following.

2x^{3} -x^{2} -3x-210

2 -  First, find all factors of the constant term 210.

1,2,3,4,5,6,7,10,14,15,21,30,35,42,70,105,210

3) Try each factor above using the Remainder Theorem.

Substitute 1 into x. Since the result is not 0, x-1 is not a factor..

2*1^{3} -1^{2} -3*1-210=-212

Substitute -1 into x. Since the result is not 0, x+1 is not a factor..

2(-1)^{3} -(-1)^{2} -3*-1-210=-210

Substitute 2 into x. Since the result is not 0, x-2 is not a factor..

2*2^{3} -2^{2} -3*2-210=-204

Substitute -2 into x. Since the result is not 0, x+2 is not a factor..

2{(-2)}^{3}-{(-2)}^{2}-3\times -2-210 = -224

Substitute 3 into x. Since the result is not 0, x-3 is not a factor..

2\times {3}^{3}-{3}^{2}-3\times 3-210 = -174

Substitute -3 into x. Since the result is not 0, x+3 is not a factor..

2{(-3)}^{3}-{(-3)}^{2}-3\times -3-210 = -264

Substitute 5 into x. Since the result is 0, x-5 is a factor..

2\times {5}^{3}-{5}^{2}-3\times 5-210 =0

------------------------------------------------------------------------------------------

⇒ x-5

4)  Polynomial Division: Divide 2{x}^{3}-{x}^{2}-3x-210  by x-5.

                                               2x^{2}                       9x                      42

                                      -------------------------------------------------------------------------

x-5                               |    2x^{3}                          -x^{2}                     -3x     -210

                                           2x^{3}                             -10x^{2}

                                        -----------------------------------------------------------------------

                                                                             9x^{2}                -3x       -210

                                     --------------------------------------------------------------------------

                                                                          42x                              -210

                                                                         42x                               -210

                                      -------------------------------------------------------------------------

5)  Rewrite the expression using the above.

2x^2+9x+42

(2x^2+9x+42)(x-5)=0

3) Solve for x.

x=5

4)  Use the Quadratic Formula.

1 - In general, given a{x}^{2}+bx+c=0 , there exists two solutions where:

x=\frac{-b+\sqrt{b^{2} -4ac} }{2a} ,\frac{-b-\sqrt{b^2-4ac} }{2a}

2 -  In this case, a=2,b=9 and c = 42.

x=\frac{-9+\sqrt{9^2*-4*2*42} }{2*2} ,\frac{-9-\sqrt{9^2-4*2*42} }{2*2}

3 - Simplify.

x=\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}

5) Collect all solutions from the previous steps.

x=5,\frac{-9+\sqrt{255}i }{4} ,\frac{-9-\sqrt{255}i }{4}

4 0
2 years ago
Read 2 more answers
A rectangular prism has a length of 7 inches and a width of 5 inches. The lateral area is 192 square inches. What is the height
Dennis_Churaev [7]

Answer:

I think it would be 5.49 as the height of the prism.

Step-by-step explanation:

I just did 7 × 5 which is 35, and then I did 192 ÷ 35 and got 5.49. I'm not completely sure but that's my best answer I hope it helps!

6 0
3 years ago
Read 2 more answers
Evaluate.<br> 418!<br> 2!7!<br> plzzzz helpppp
zavuch27 [327]

Answer:

whatttttt6 whattttt whattt

7 0
3 years ago
Read 2 more answers
1. Simplify the radical expression<br> √50<br><br> A. 5√2<br> B. 2√5<br> C. 5√10<br> D. 5
defon
/50 = /25•2
/25 • /2 further written as
5 • /2 simplified form

so A
6 0
3 years ago
What dose "{" mean in algebra?<br><br> Ex.<br> {4y-2x-8<br> {5x-4y=20
GaryK [48]

Answer:

System of Equations

Step-by-step explanation:

A system of equations refers to a number of equations with an equal number of variables. We will only look at the case of two linear equations in two unknowns. The bracket on the left indicates that the two equations are intended to be solved simultaneously, but it is not always used.

4 0
2 years ago
Other questions:
  • How can you use the values of a, b, and c to write a quadratic function in vertex form?
    15·1 answer
  • Evaluate the expression: 15(6 – 4)
    12·1 answer
  • Complex numbers<br> [ = square root symbol<br><br> -[-64<br> How would I find this?
    8·1 answer
  • Use the distributive property to multiply 34x6 , 16x9 , 27x8
    13·1 answer
  • Josiah walks from his house to the school in the morning and then from the school to his house in the afternoon. he does this 5
    13·1 answer
  • (6ab+a-4)-(ab-1) please help me!
    14·2 answers
  • Find the sum of 5x+20 and the opposite of 20 then write an equivalent expression on standard form
    8·1 answer
  • Imagine Kiri Commented On this question (⊙_⊙)?
    13·1 answer
  • Pls pls help me with this
    13·1 answer
  • If A PQR = ASTU, which statement must be true?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!