Let the unknown side be "z" inches
Through pythagoras:

Because the square of the two sides add up to the square of the hypotenuse in a right triangle.
This means that



So the missing side is 16 inches
Hope this helped
Answer:
a) So, this integral is convergent.
b) So, this integral is divergent.
c) So, this integral is divergent.
Step-by-step explanation:
We calculate the next integrals:
a)
![\int_1^{\infty} e^{-2x} dx=\left[-\frac{e^{-2x}}{2}\right]_1^{\infty}\\\\\int_1^{\infty} e^{-2x} dx=-\frac{e^{-\infty}}{2}+\frac{e^{-2}}{2}\\\\\int_1^{\infty} e^{-2x} dx=\frac{e^{-2}}{2}\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cleft%5B-%5Cfrac%7Be%5E%7B-2x%7D%7D%7B2%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D-%5Cfrac%7Be%5E%7B-%5Cinfty%7D%7D%7B2%7D%2B%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20e%5E%7B-2x%7D%20dx%3D%5Cfrac%7Be%5E%7B-2%7D%7D%7B2%7D%5C%5C)
So, this integral is convergent.
b)
![\int_1^{2}\frac{dz}{(z-1)^2}=\left[-\frac{1}{z-1}\right]_1^2\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\frac{1}{1-1}+\frac{1}{2-1}\\\\\int_1^{2}\frac{dz}{(z-1)^2}=-\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D%5Cleft%5B-%5Cfrac%7B1%7D%7Bz-1%7D%5Cright%5D_1%5E2%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cfrac%7B1%7D%7B1-1%7D%2B%5Cfrac%7B1%7D%7B2-1%7D%5C%5C%5C%5C%5Cint_1%5E%7B2%7D%5Cfrac%7Bdz%7D%7B%28z-1%29%5E2%7D%3D-%5Cinfty%5C%5C)
So, this integral is divergent.
c)
![\int_1^{\infty} \frac{dx}{\sqrt{x}}=\left[2\sqrt{x}\right]_1^{\infty}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=2\sqrt{\infty}-2\sqrt{1}\\\\\int_1^{\infty} \frac{dx}{\sqrt{x}}=\infty\\](https://tex.z-dn.net/?f=%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cleft%5B2%5Csqrt%7Bx%7D%5Cright%5D_1%5E%7B%5Cinfty%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D2%5Csqrt%7B%5Cinfty%7D-2%5Csqrt%7B1%7D%5C%5C%5C%5C%5Cint_1%5E%7B%5Cinfty%7D%20%5Cfrac%7Bdx%7D%7B%5Csqrt%7Bx%7D%7D%3D%5Cinfty%5C%5C)
So, this integral is divergent.
Answer:
How many of what?
Step-by-step explanation:
For h(x) = -7x + 10, x =1
For r(x) = 4/5x+ 7 , x = -15
Step-by-step explanation:
in order to find the value of x on which the functions will have given values, we will put the functions equal to the given values
So,
<u>h(x) = -7x + 10; h(x) = 3</u>

Dividing both sides by -7

<u>r(x) = 4/5x+7; r(x) = -5</u>

<u></u>
Keywords: Functions
Learn more about functions at:
#LearnwithBrainly