Answer:

Step-by-step explanation:
![\sf 3a^5-18a^3+6a^2\\\\HCF = 3a^2\\\\Take \ 3a^2 \ common\\\\= 3a^2(a^3-6a+2)\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%203a%5E5-18a%5E3%2B6a%5E2%5C%5C%5C%5CHCF%20%3D%203a%5E2%5C%5C%5C%5CTake%20%5C%203a%5E2%20%5C%20common%5C%5C%5C%5C%3D%203a%5E2%28a%5E3-6a%2B2%29%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Problem 10
You are correct. You divide 360 over the exterior angle measure to get 360/72 = 5
=========================================================
Problem 11
x = 33 is correct as this angle is an alternate interior angle pair with the 33 degree angle up top
y = 38 is correct since y+33+109 = 180 solves to y = 38. In other words: 38+33+109 = 180
z = 109 is correct. The opposite angles of a parallelogram are congruent
Answer:

Step-by-step explanation:
Hi there!
<u>What we need to know:</u>
- Linear equations are typically organized in slope-intercept form:
where m is the slope of the line and b is the y-intercept (the value of y when the line crosses the y-axis)
- Parallel lines will always have the same slope but different y-intercepts.
<u>1) Determine the slope of the parallel line</u>
Organize 3x = 2y into slope-intercept form. Why? So we can easily identify the slope, m.

Switch the sides

Divide both sides by 2 to isolate y

Now that this equation is in slope-intercept form, we can easily identify that
is in the place of m. Therefore, because parallel lines have the same slope, the parallel line we're solving for now will also have the slope
. Plug this into
:

<u>2) Determine the y-intercept</u>

Plug in the given point, (4,0)

Subtract both sides by 6

Therefore, -6 is the y-intercept of the line. Plug this into
as b:

I hope this helps!
Answer:
y = - | (1/4)x - 1 | + 3
Step-by-step explanation:
if you are asking for the equation of the graph,
y = - | (1/4)x - 1 | + 3
I do believe it would be a 2.2