<h2>○=> <u>Solution (6)</u> :</h2>
Ratio of two numbers = 2:3
The larger number = 6
Let the smaller number be x.
Which means :
![=\tt 2 : 3 \: = \: x : 6](https://tex.z-dn.net/?f=%20%3D%5Ctt%202%20%3A%203%20%5C%3A%20%20%3D%20%20%5C%3A%20%20x%20%20%3A%206)
![= \tt \frac{2}{3} = \frac{x}{6}](https://tex.z-dn.net/?f=%20%3D%20%5Ctt%20%5Cfrac%7B2%7D%7B3%7D%20%20%3D%20%20%5Cfrac%7Bx%7D%7B6%7D%20)
![=\tt 2 \times 6 = 3 \times x](https://tex.z-dn.net/?f=%20%3D%5Ctt%202%20%5Ctimes%206%20%3D%203%20%5Ctimes%20x)
![=\tt 12 = 3x](https://tex.z-dn.net/?f=%20%3D%5Ctt%2012%20%3D%203x)
![=\tt x = \frac{12}{3}](https://tex.z-dn.net/?f=%20%3D%5Ctt%20x%20%3D%20%20%5Cfrac%7B12%7D%7B3%7D%20)
![\hookrightarrow\color{plum}\tt \: x = 4](https://tex.z-dn.net/?f=%5Chookrightarrow%5Ccolor%7Bplum%7D%5Ctt%20%5C%3A%20x%20%3D%204)
▪︎<u>Therefore, the smaller number = 4</u>
<h2>○=> <u>Solution (7)</u> :</h2>
36 compared to 6 = ![\tt \frac{36}{6}](https://tex.z-dn.net/?f=%20%5Ctt%20%5Cfrac%7B36%7D%7B6%7D%20)
Let the number be x.
Which means :
![= \tt \frac{36}{6} = \frac{x}{3}](https://tex.z-dn.net/?f=%20%3D%20%5Ctt%20%5Cfrac%7B36%7D%7B6%7D%20%20%3D%20%20%5Cfrac%7Bx%7D%7B3%7D%20)
![=\tt \frac{36 \div 2}{6 \div 2} = \frac{x}{3}](https://tex.z-dn.net/?f=%20%3D%5Ctt%20%20%5Cfrac%7B36%20%5Cdiv%202%7D%7B6%20%5Cdiv%202%7D%20%20%3D%20%20%5Cfrac%7Bx%7D%7B3%7D%20)
![=\tt \frac{36}{6} = \frac{18}{3}](https://tex.z-dn.net/?f=%20%3D%5Ctt%20%20%5Cfrac%7B36%7D%7B6%7D%20%20%3D%20%20%5Cfrac%7B18%7D%7B3%7D%20)
▪︎Therefore, the fractional number
is equal to
.
<h2>○=> <u>Solution (8)</u> :</h2>
Number of Rose's for 24 red Rose's = 6
This can be written in a ratio as 24:6
Number of roses = 8
Let the number of red roses for these roses be x.
Which means :
![=\tt \frac{24}{6} = \frac{x}{8}](https://tex.z-dn.net/?f=%20%3D%5Ctt%20%20%5Cfrac%7B24%7D%7B6%7D%20%20%3D%20%20%5Cfrac%7Bx%7D%7B8%7D%20)
![=\tt 24 \times 8 = 6 \times x](https://tex.z-dn.net/?f=%20%3D%5Ctt%2024%20%5Ctimes%208%20%3D%206%20%5Ctimes%20x)
![=\tt 192 = 6x](https://tex.z-dn.net/?f=%20%3D%5Ctt%20192%20%3D%206x)
![=\tt x = \frac{192}{6}](https://tex.z-dn.net/?f=%20%3D%5Ctt%20x%20%3D%20%20%5Cfrac%7B192%7D%7B6%7D%20)
![\hookrightarrow \color{plum}\tt x = 32](https://tex.z-dn.net/?f=%5Chookrightarrow%20%5Ccolor%7Bplum%7D%5Ctt%20x%20%3D%2032)
▪︎Therefore, 32 red roses are there if there are 8 roses.
<h2>○=> <u>Solution (9)</u> :</h2>
Number of children for 2 adults = 7
This can be written in a ratio as 7:2
Number of children in the plaza = 21
Let the number of adults be x.
Which means :
![= \tt \frac{7}{2} = \frac{21}{x}](https://tex.z-dn.net/?f=%20%3D%20%5Ctt%20%5Cfrac%7B7%7D%7B2%7D%20%20%3D%20%20%5Cfrac%7B21%7D%7Bx%7D%20)
![=\tt7 \times x = 2 \times 21](https://tex.z-dn.net/?f=%20%3D%5Ctt7%20%5Ctimes%20x%20%3D%202%20%5Ctimes%2021%20)
![=\tt 7x = 42](https://tex.z-dn.net/?f=%20%3D%5Ctt%207x%20%3D%2042)
![=\tt x = \frac{42}{7}](https://tex.z-dn.net/?f=%20%3D%5Ctt%20x%20%20%3D%20%20%5Cfrac%7B42%7D%7B7%7D%20)
![\hookrightarrow \color{plum}\tt \: x = 6](https://tex.z-dn.net/?f=%20%5Chookrightarrow%20%5Ccolor%7Bplum%7D%5Ctt%20%5C%3A%20x%20%3D%206)
▪︎Therefore, 6 adults were there in the plaza.
<h2>○=> <u>Solution (10)</u> :</h2>
Cost of 12 pencils = P60
Cost of 1 pencil :
![= \tt \frac{60}{12}](https://tex.z-dn.net/?f=%20%3D%20%5Ctt%20%5Cfrac%7B60%7D%7B12%7D%20)
![=\tt P5](https://tex.z-dn.net/?f=%20%3D%5Ctt%20P5)
Thus, the cost of one pencil = P5
Cost of 25 pencils :
= Cost of one pencil × 25
![=\tt 5 \times 25](https://tex.z-dn.net/?f=%20%3D%5Ctt%205%20%5Ctimes%2025)
![\color{plum}=\tt \: P \: 125](https://tex.z-dn.net/?f=%20%5Ccolor%7Bplum%7D%3D%5Ctt%20%5C%3A%20P%20%20%5C%3A%20125)
▪︎Therefore, the cost of 25 pencils = P125