Answer:
A
Explanation:
when light is limited photosynthesis will be slowed so the euglena will prefer to ingest food...light is needed for photosynthesis
<span>I is dominant, i is recessive. The A's and B's are just show which allele I is. When there is just one dominant allele, it masks the recessive in blood typing. Remember IA and IB are codominant.
O is always ii
A is IAi (heterozygous) or IAIA (homozygous)
B is IBi (heterozygous) or IBIB (homozygous)
AB is always IAIB
Remember: You get one allele from each parent!
1. Father must be ii, mother must be ii, so all children must be ii.
2. Father is IAIA (the homozygous one), the mother is IBIB, so the only possibility for the children is IAIB, because you get one allele from the father and one from the mother.
3. Father is IAi, mother is IBi, so the children can be any of the blood types, because they can have all the combinations of genotypes.
4. Father is ii, mother is IAIB. Children can only be IAi or IBi.
5. Father is IAIB, mother is IAIB. Children can be IAIA, IBIB, or IAIB.
Example of Punnett square:
3. Father is type A, heterozygous, mother is type B, heterozygous
Father must be IAi (heterozygous)
Mother must be IBi (heterozygous)
_______IA ____ i
IB____ IBIA____IBi
i _____ IAi______ii
Sorry, that was difficult on here, hope it's understandable.
The father's alleles run across the top, the mother's are on the side, you follow to where they meet to find the possibilities for the children. IBIA (AB blood type), IBi (B), IAi (A), and ii (O) are the possibilities in this case.
Hope that helps!</span>
Answer:
Genetic variations that alter gene activity or protein function can introduce different traits in an organism. If a trait is advantageous and helps the individual survive and reproduce, the genetic variation is more likely to be passed to the next generation (a process known as natural selection).
Explanation:
<h3>❣️(◍jess bregoli◍)❣️</h3>
yo brother! wassup brother
lm.ao
A Pseudopodia is a temporary protrusion of the surface of an amoeboid cell for movement and feeding.
Answer: Amino acids share COMMON chemical groups but have UNIQUE side chains that allow for variation. The common groups are amino and CARBOXYL groups attached to an α carbon. Amino acids link together into a polypeptide via PEPTIDE bonds. Each polypeptide has a unique sequence. The repeating subunits interact with each other via hydrogen bonds to establish secondary structures. Interactions between the side chains determine the tertiary structure of the polypeptide. The combination allows for an almost infinite number of possible structures, each with a different function.
Explanation: