1. First, let us define the width of the rectangle as w and the length as l.
2. Now, given that the length of the rectangle is 6 in. more than the width, we can write this out as:
l = w + 6
3. The formula for the perimeter of a rectangle is P = 2w + 2l. We know that the perimeter of the rectangle in the problem is 24 in. so we can rewrite this as:
24 = 2w + 2l
4. Given that we know that l = w + 6, we can substitute this into the formula for the perimeter above so that we will have only one variable to solve for. Thus:
24 = 2w + 2l
if l = w + 6, then: 24 = 2w + 2(w + 6)
24 = 2w + 2w + 12 (Expand 2(w + 6) )
24 = 4w + 12
12 = 4w (Subtract 12 from each side)
w = 12/4 (Divide each side by 4)
w = 3 in.
5. Now that we know that the width is 3 in., we can substitute this into our formula for length that we found in 2. :
l = w + 6
l = 3 + 6
l = 9 in.
6. Therefor the rectangle has a width of 3 in. and a length of 9 in.
3 and 2 are the ansewers i tink
Answer:
V = 1071.79 yd^3
Step-by-step explanation:
The volume of a cone is
V = 1/3 pi r^2 h where r is the radius and h is the height
We are given a diameter of 16 so the radius is 1/2 of the diameter or 8
The height is 16
V = 1/3 ( 3.14) (8)^2 ( 16)
V = 1071.78666 yd^3
Rounding to the nearest hundredth
V = 1071.79 yd^3
Answer: 27465 km/h
Step-by-step explanation:
From the figure, let us use cosine formula to calculate the resultant displacement.
B^2 = C^2 + A^2 - 2(A)(C) cosØ
Where C = 580km
A = 360 km
Ø = 153 degree
Substitute all the parameters into the formula
B^2 = 580^2 + 360^2 - 2(360)(580)cos153
B^2 = 466000 - ( - 372084.32 )
B^2 = 466000 + 372084.32
B^2 = 838084.32
Square root both sides
B = 915.5 km
You are told to use a scale of 1 cm to 50 km.
Therefore, B = 915.5/50 = 18.3 cm
The time given are: 09:23 and 09:25.
The time difference = 25 - 23 = 2 minute.
Convert minutes to hours
2 minute = 2/60 = 1/30 hours
Speed = distance/time
Speed = 915.5 ÷ 1/30
Speed = 915.5 × 30
Speed = 27465 km/h
Or
Convert 2 minute to second
2 minute = 2 × 60 = 120 seconds
Speed = distance/time
Speed = 18.3/120
Speed = 0. 1525 cm/s